7 EEEEE.
o T

ARCH _INC SANTA
F/G 12/%

02 APR 87 CR-8134/4

AND ENVIRONM. . <U) TECOLOTE

BARBARA CA N J DRENNER ET AL.

UNCLASSIFIED ESD-TR-87-167 F19620-84-D-0019

A PLAN FOR COLLECTING ADA SOF TWARE DE&EO"‘IT COSTY

:
:

'15 < &1 \\;\) A I-l\,n- I-fvl 1\---L'n-\ A A, PR
T s CL Ay AN\ EARAAA m....w..”....”..“..z......._ IRORRARRA LI AR A
% % L5 5SA N o baah] TNLNSYNNS P, s N A Th)
XXX XS rET LSS S NN S IR LA AR A R A
< LA PP A s Ak s PRAURICIL R R S IR IS -
= PSPPI) MR A G @SS a0 AARRATSIT " & SakSanN

.

3
7y
[V, Py Y

A
R
a

3 ER

fl=
IS

)
> = = = =
agﬂlgbﬁok
o~ olff ok = A.
- = == ” —_— /
) pE R PRERERE =
_ ofll —fii
& . —_ N
9 — =
p = = =
2
I.
!.
o
»
¥
1]
-
]
v
td
b
&
oo A . v . -) . . y % s - . . - < » - - -

A Plan for Collecting Ada Software Development
1 Cost, Schedule, and Environment Data

NEAL J. BRENNER

Lo DANIEL D. GALORATH e 3

o DAVID G. LAWRENCE .

D JUDY C. RAMPTON "
BT Z
| ‘n Tecolote Research, Inc. S
L 5266 Hollister Avenue, No. 301 NS

lq Santa Barbara, California 93111 -

l Y

) X
| < 2 april 1987 DT‘(| 3
1 e
> o
ELECTE :

ocT21 1087 -

i

'..’

'Y

=D 3
9

r

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

'

i

| b
l *
| :-::
| .
X

B ‘
| .'_‘-
t P Prepared For ::,‘"
| ELECTRONIC SYSTEMS DIVISION ~
| AIR FORCE SYSTEMS COMMAND -
| DEPUTY COMPTROLLER Byt
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731 s

o

3

87 10 ¢ 013

A A T W TR AT LS I I T TG

Ol ~ N -.- ., “. -'_ -..\ \" ~ EACREAK RN h
T R e e R R A S P

if .’ J_ * J' '_ " -y .' .(*’ _.._-.\{{-_x " . ‘-__*-u ‘. ;..\- Cat. \‘.-‘:;-'n- -'» X \u‘\f

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

" THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION."

JOSEPH P. DEAN, Capt, USAF ELLEN M. COAKLEY
Senior Software Cost-Research Analyst Technical Director of Cost
Directorate of Cost Comptroller
Comptroller
’ , ’ -
: //// l L —ka sl ﬂ'
: e

FOR THE COMMANDER

DAVID G. KANTER, Colonel, USAF

Comp{ioller/<:>¥
, v/

SRR P Ly

SRS

b e =

SASTAS R SRS ER A CASL S DN S

Unclassified

SECURITY CLASSIHICATION OF THIS PAGE ﬁm

REPORT DOCUMENTATION PAGE

"

s REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
24 ic ‘lease; Distributi
75 DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for Public Release; Distribution
) Unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
CR-0134/1 ESD-TR-87-167
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)
Tecolote Research, Inc. ELECTRONIC SYSTEMS DIVISION (ACCR)
L. ADDRESS (City, State, and 2IP Code) 7b ADORESS (City, State, and 2IP Codv)
5266 Hollister Avenue, No. 301
Santa Barbara, California 93111 Hanscom AFB |
Massachusetts, 01731-5000
84 NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBELR
OHGANIZATION (If applicable)
Deputy Comptroller ESD/ACCR F19628-84-D-0019
8¢ ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
Hanscom AFB PROGRAM PROJECT TASK WORK UNIT
Mussachusetts, 01731-5000 ELEMENT NO. |NO NO ACCESSION NO

11 NILE (Include Security Classification)

A Plan for Collecting Ada Software Development Cost, Schedule, and Environment Data

12 PERSONAL AUTHOR(S)
Neal J. Brenner, Daniel D. Gatorath, David G. Lawrence, Judy C. Rampton

130 TYPE OF REPORT 13b TIME COVERED 14. DATE Of REPORT (rear, Month, Day) |15 PAGE COUNT
Technical FROM __TO 11987 April 2 162
16 SUPPLEMENTARY NOTATION

17 COSATI CODES

18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number)
FIELD GROUP SUB-GROUP

Ada Software Data Collection

19 ABSTHACT (Continue on reverse if necessary and identify by block number)

This document identifies the data elements that need to be collected and methodologies to be
used when developing an Ada Software Cost Database. It presents various data collection for-

tats that can be used for data collection and cross references the data elements with
LSD TR-87-166,

Yo

1 .

-

"

g} 20 OISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

'y

L CJUNCLASSIFILD/UNUMITED £ SAME AS RPT [30TC USERS | 1oy 0w o4 £ 10l

E:.: 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Indlude Area Code) | 22¢ OFFICE SYMBOL

o Joseph Dean, Captain, USAF (617) 377-2679 ESD/ACCR

..l

e DD FORM 1473, 8a MaR 83 APR edition may be used untid exhausted SECLHITY CLASSIFICATION OF “HIS PAGE

[All other editions are obsclete) Tt/
v Unclassified |

S Ra Gl o Gap Rop bod 80N A% ot a8 aLE gAl SR AR RSl aSA ath ath AR AR SN R e Sef et et AL S a8 00 Lt it lis? S Aat il I 0 Gl BB Al ad Al ad ad Bl

SUMMARY

The DoD has supported the Ada programming language and Ada Program
Support Environment (APSE) to enhance the state of the art of software
engineering, produce more reliable software, and reduce overall software
life cycle costs. However, at the time of this report, the complete cost
ramifications of Ada and the APSE are uncertain.

This report identifies data that can be collected and used to
measure the impant Ada has on the cost of developing military-standard
softvare. Several potential cost driver impacts and issues have been
identified. They are:

e The time spent in design will probably have a greater impact on
Ada projects than non-Ada projects. Good designs may reduce
errors and increase reliability. Incomplete or ambiguous designs
may cause project failure.

o The allocation of costs to phases in the life-cycle of an Ada
project may differ from projects wusing other languages.

(Requirements and design costs phases will probably be higher.)

e Modern software engineering practices may be more critical in Ada
developments. Medium- to large-scale projects developed without

good software engineering practices may cost significantly more.

e The Ada language and tools may take longer to learn than prior
development environments. The formal training level may be a
more significant cost driver than traditional Fortran environ-

ments.

o Reusability requirements may impact both the use of preexisting
softvare and the development of new software intended to be

reused.

AR LIRS S R Y et AN atata,t AT I s B IR
MACN AN AN N AN N N A A T A N I R 0 L gy Sty R NI L A b 8

it a bt tia bt P M A Patiabatad UMALLULULD AL AT o b MR LDt L it At b8 b0 s SO L NN ARl Sl S bl Sl At et SatDab Sal bt gty |

e Just the use of certain Ada language features may impact project

costs disregarding other development or engineering changes.

e Ada Programming Support Environment (APSE) productivity tools may
actually contribute more to cost differences than any other

factor.

e Language and tool maturity may impact Ada projects for the next
five years or more.

o Data collected on experimental Ada projects may be unduly influ-
enced by the personnel and the fact that the project is being
closely monitored (the Hawthorne effect).

This task was completed using the following steps. First, a litera-
ture search was performed as described in section 3. Next, an interview
questionnaire was created to be used as a basis for interviews with soft-
wvare modelers, Ada softvare engineering experts, and Ada project managers.
Their responses to the interview questions, detailed in sections 4 and 5,
expanded the issues and impacts determined from the literature search.

Then, the Ada cost driver issues and impacts were used to modify
existing data collection packages to be used to drav out the Ada cost
impacts.

Candidate Ada projects were located via the interviews and contacts
with Ada coordination groups. These projects range from small to large in
scale and include new projects, reimplementations developed primarily to

better understand the Ada impacts and experimental, non-mission-critical
projects.

The attached data collection plan defines specific steps to be taken
during on-site data collection during the next phase of this effort.

Included are: types of project personnel to be interviewed, documents to

be reviewed, data validation methods, etc.

‘|: M - - . o 2t oMl otk 2t ™
\
"
|}
\
3 Additionally, we recommend a tools study be performed to identify
' avallable APSE tools and quantify their individual characteristics and
> performance. The final deliverable of the tools study would be a compara-
r T tive evaluation in the form of a consumer’s guide. This guide would pro-
vide the information for the government and contractors to make informed
‘
. choices and selections of the most appropriate tools.
’\-
o
p
4 P
: -".f\—:_c-;s.on For]
y L NTIS CRAG L
N ' [VIRNTREN PREVELS I
Ldoticenon .
: I e
Bl B
’ { ! t Yo, /
: b R
-, ‘ RN ity Oy A
N poo - - : L e———
. (. Ayl)
v ! . i
[y : : i ’
i fod =~ i
Al
l
(4
7
: |
AN I
%
Cd
v - < “ -~

WP gl oyl EaN N, o L R N e T T e e T e et T T e e L e L,
. :‘-’}t{)’:“}l}‘_‘n@‘&h\fh":‘f} \lefh\i‘,f‘f:‘f‘\n';ﬂ'--s'-.‘..l'.‘q'---'-' -'?1‘.’(-‘:‘.‘(—‘!’} l'}q"-.l'?z’..ll':‘/.':n':-'-.a'.-":q'.\1'}-'}}-‘)}-':.':.‘ te e 'J‘}

- W

) ACKNOVLEDGMENTS

The majority of the work on this report was performed by
Daniel D. Galorath, David G. Lawrence, and Judy C. Rampton, all

of Computer Economics, Inc.

We appreciate the time and consideration provided us by the
respondents during the somewhat lengthy interview process. Ve
thank Dr. Randall Jensen for his work on the data collection

forms and Carolyn Gannon for her review of the entire report.

17--! L% BRI B

vii

g iadte bl Sl Mg gy b i bie b a Ui hint i il b S ol ol Bl Bl Bl Bl p o0 Dt 0ol B ot D0 LR 0,0 a0 B8 L) S Bl RV DV b Bt e o |

MR AT R T AT R T AT AV e Ve g W M e " W W M

CONTENTS
. SECTION PAGE
1 INTRODUCTION. o i ittt ittt s enaooneasosesnanssssasassasosssns 1
1.1 SCOPE........... e .
1.2 PROCEDURE. ... vvv e ceeanensennneennenneannnennnn. :
i.3 DEFINITIONS . . i ittt ittt reonnonsossonsessnsonanoensssn I
2 LITERATURE SEARCH. ... vitttiennvesoeenscoonsnesnoeansanans 1
2.1 LITERATURE SEARCH PURPOSE.o tietinenernnannnnns 5
2.2 LITERATURE SEARCH SOURCES. ...t etivrrveeeennononnes 3
3 INTERVIENS . « « v vt vne e et eeaneeene s eetneeenennnernnnes 5
31 INTERVIEVW PURPOSE......... ce et trreesse e e 5
3.2 INTERVIEW PROCEDURES.ttt i ittt neerennnennnnns 5
3.3 GENERAL INTERVIEV RESULTS........ Ce s e e et e et e cee e 5
3.4 INDIVIDUAL INTERVIEW SUMMARIES...........000.. Ceeeen 6
3.4.1 EXPERL A, ittt i ieitneteeesesenennonennas 7
34,2 EXPERT Bur'rriineunennenennenneenennennennns 8
3.4.3 EXPERT Cu'oeeirrrrnnnnnnnanseseeneenunnnnnnnns 9
3.4.4 EXPERT D...tviiiiiitteenenenrsencanosnnansoes 10
3.4.5 EXPERT E.....iiiiiiieiirerennscnnensannns 10
346 EXPERTS F, G, AND H............ e, h
34 7 EXPERT Ltevrneernnneennnnseennneennnneeenns L
3748 EXPERT Juuutrennnnneeeaaninneeeeannnnnenes 0
3.4.9 EXPERT K.ttt it ittt ttneeeesonoenansoanensns 13
3.4.10 EXPBRT L.t vttt iittneenconaeneensonennns {4
3.4.11 EXEERTS M AND N. i it iiiieiierteetnnnnnnnns . 17
3.4.12 EXPERT O...cvvveivvnrennns ettt eee e 17
4 ADA COST DRIVER IMPACTS AND ISSUES......... Ce et ee s e 19
4.1 PURPOSE......covvveennenn. e ettt et e, 19
4.2 DESIGN AND DEVELOPMENT...... et e e et ey 19
4.3 COST IMPACTS...civivneennn C e er ettt 71
4.4 SOPTWVARE ENGINEERING HETHODS 29
4.5 IMPACT OF EXPERIENCE, CAPABILITY, AND TRAINING...... 23
4.6 REUSABILITY ISSUES............ e ee e s et 24
4.7 IMPACT OF LANGUAGE FEATURES.uvuvevenennenennnnss S
4.8 IMPACT OF AN ADA PROGRAMMING SUPPORT
ENVIRONMENT (APSE) vttt ninunrnerncenonssoannns 26
4.9 MATURITY ISSUES. .. ittt ittt it i eeateetneanannnsns 26
4.10 DATA COLLECTION ISSUES. .t iitinrrnreneonenennenrenas I8
4.11 ITEMS RECOMMENDED FOR DATA COLLECTION............... 09
) RECOMMENDATIONS FOR ADDITIONAL RESEARCH................ .. 31
.
p.
r
2
-
5. i'\
D
A

2
P
i
X
l'. s
3
a
?
s
\
F
?'1
4
4
S

e et Tt T T S e e T e T T e T e T e T T

;

GG T MY T F TN Y L.

CONTENTS (Continued)

SECTION
6 DATA COLLECTION FORM STRATEGY AND CROSS-REFERENCE
TO ESD FORMS. ..ottt ittt ittt tnanoneesnansnnns
6.1 OVERALL CHANGES WITHIN FORMS........covevueennenenns
6.1.1 MIL-STD 2167 TERMINOLOGY WITHIN FORMS........
6.1.2 RANGES OF VALUES WITHIN FORMS................
6.1.3 ADDITIONAL COST DATA TO SUPPORT CURRENT
COST MODELS. ..ot iiiiinnirernoonsoanssnsnns
6.2 ESD FORM ABBREVIATIONS........cicvtttrteinnennnnn-an
6.3 SOFTWARE DEVELOPMENT PROJECT FORM CROSS-REFERENCE..
6.4 SYSTEM LEVEL OR CSCI LEVEL DOCUMENTATION FORM
CROSS-REFERENCE. iiiiiiiiintnsacnteasaronns
6.5 DEVELOPMENT COMPUTER SYSTEM AND TOOLS FORM
CROSS-REFERENCE.ttt nantennsteennnannns
6.6 TARGET COMPUTER SYSTEM FORM CROSS-REFERENCE.........
6.7 COMPUTER SOFTWARE CONFIGURATION ITEM FORM
CROSS-REFERENCE. iiiirietenennnennnenonnnnnns
6.8 RESOURCE EXPENDITURE DATA CROSS-REFERENCE...........
6.9 COMPUTER SOFTWARE SIZE CROSS-REFERENCE..............
BIBLIOGRAPHY. ...ttt ittt it e iiinaeacnretssnnannsasans
APPENDIX
A QUESTIONNAIRE. .. ittt iiierereansnotnannstannsanss
B L R) 2 g
c DATA COLLECTION FORMS AND INSTRUCTIONS............cccvivunn
D DATA COLLECTION PLAN.0t iiiiiiiiiiiiiiiiierenevnnnn

33
33
33
33

33
34
34

37

38
41

43
48
49

50

L O

AP LGN AR A A AL RO C A bt A A0 A L' AT Sl Bop balt had" 6 A ed dab 0o Sk Aoh G Ol A Gl Gl G Uod Do Sol Sub Gl tul Sal Colesnt P g™ ai b at e iy - g~ e iy i el ke |

INTRODUCTION

1.1 SCOPE

The scope of the research described in this report is to determine
the issues and impacts of using Ada for military-standard software develop-

ment and how to measure those issues and impacts.

1.2 PROCEDURE

The first step was an extensive review of Ada literature for cost

driver impacts and issues.

Next, an interview questionnaire was built and personal interviews
wvere conducted with software modelers, Ada software engineering experts,
and Ada project managers. Their responses to the interview questions

expanded the issues and impacts determined from the literature search.

Then, the Ada cost driver issues and impacts determined during the
literature search and personal interviews were used to create new data
collection forms. These forms are intended for use during the next phase,

actual data collection.

In anticipation of the next phase, a list of Ada projects was com-
piled, showing candidates for Ada collection based on information provided
by interview respondents or contacts with Ada coordination groups. A data
collection plan was developed which defines specific steps to be taken

during on-site data collection during the next phase of this project.

1.3 DEFINITIONS
Ada

A high-level programming language designed in accordance with the
requirements of the Department of Defense. Certain features were borrowved
from such modern programming languages as Pascal. It has been designated

by the Department of Defense as its official computer language.

»

SN N T el
I S R I R SR S, ¥

R R R e TN g R NS VR NR VWS VAT R N AT S F Yy T I ST TR TE T SR A

APSE

During Ada‘'s development, it became apparent that special-purpose "
softwvare tools and resources vere needed to provide support for Ada appli-
cations programs. These tools and resources, called an "Ada Programming
Support Environment” (APSE), consist of an integrated set of tools, data

base facilities, and control interfaces.
Cost Driver

A factor having an impact on the cost of accomplishing or predicting
the cost of a task.

IRAD

Abbreviation for Internal Research And Development. Used to
describe a project funded internally by a contractor for research purposes.

IRAD projects are not usually subject to military standards.

PDL

NN

Abbreviation for Program Design Language. A formalization of the
use of pseudocode.

-, ' PR

N e e . .
Lt e e e T R
aad A .

.
A"

RN EX .
,.._-'1.4_.

.y

PR,

b
F
y
l
p
4
4
.
- o
L‘A_.J. ""'.‘ ‘ '.'

R A IR IR UL I TN S] <o T P - . R, . R T
POIP R T S S O R SRS SO W Sl Tl S S, G0, VEU, S T, "HOI 8 TO PP YL S, W G AL G g, ST TP, . St " et o

029" Ral 'Rty ey (WYY MY ~ e 8l g 8 S B "t il B B ta i e gt ~ ‘ant'a 8t o ‘Bl Sl Bad” A ‘A S RS Y ot

LITERATURE SEARCH

2.1 LITERATURE SEARCH PURPOSE

The purpose of the literature search wvas twofold: first, to obtain
current assessments and findings relative to Ada software cost estimating
approaches, models, and techniques; second, to obtain recommendations
relative to Ada cost drivers which should be identified in the Ada Software
Data Collection Formats.

2.2 LITERATURE SEARCH SOQURCES

To accomplish the 1literature search, the following sources were
searched for pertinent information:

Ada Clearinghouse

Data Analysis Center for Software

Defense Technical Information Center

Dialog Information Service

Internal Libraries

International Society of Parametric Analysts Library
National Technical Information Service

Scientific and Technical Aerospace Reports

Space System Cost Analysis Group Library

UCLA Engineering Library

Relevant works are listed in the bibliography.

B " n ~ AR P T I St ST R R s »._--_- I o e T A S TN
e B T it e A T Y S S N ey

......
..................

P‘.V.\".\',’V‘_’\".‘"J\"." EAA A AR AL RS A A AR AL B S A AT R A A LAY A AR 'L A e §0a SO TR0 "ate W LA A Sl Yed b g ted dad Gd Aof

INTERVIEVS

3.1 INTERVIEV PURPOSE

: With any relatively new and rapidly advancing technology, published
material lags the actual experience of those "in the trenches.” The pur-
pose of the interviews was to expand and enhance the data gathered by the

literature search to reflect this experience.

3.2 INTERVIEW PROCEDURES

A questionnaire was prepared for use as a basis for the intervievs.
A copy is attached to this report as Appendix A. Intervievers were alloved
to depart from the prepared questions when deemed necessary based on the
respondents’ experience and prior answers. Interviews lasted betwveen one

and two hours and vere conducted both in person and by telephone.

3.3 GENERAL INTERVIEW RESULTS

The interviews proved a valuable source of information. Even though
responses ranged from extremely positive to very negative, the issues of
concern to the respondents were surprisingly uniform. Responses were also
consistent among those with similar backgrounds. Respondents seemed to

fall into one of three schools of thought regarding Ada:

e The Ada language and tools are a major advancement of
softwvare engineering.

e Ada 1is just another programming language.

e Ada will never have much impact.

Software cost and schedule modelers tended to be very middle-of-the-
road in their responses. As a group, they indicated interest in the tradi-
tional software metrics and desired to see data similar to that available
in the past. Present software models were judged adequate for Ada estima-

tion with the provision that some of the parameters be modified slightly

based on Ada experience.

< " e’ it » 0 v S gav Gav aat fat el e gak aae aat e o 2gac e afa’ aNa i’ aBa 2 afb 'k o 8 ara &'honban®
- W - Wy ¥ - ¥V - - W W O Wy W (Ve ¥ - i Gl Solf Nl Vol Vol Al Solh Mol ¥l LAl BN .)

»

¥
-~
\.
3
o
¥
ot Respondents with hands-on experience ran from wildly enthusiastic to
extremely negative. One respondent said Ada’s success would be furthered
ﬁ if DoD would quit granting waivers, while another thought DoD should give
‘: up on Ada entirely. The most negative responses often came from those ’
s
:E viewing Ada as just another language.
|$ Positive responses were more often received from those with more
ﬁ sophisticated tool sets, such as the Rational environment. Some respond-
‘,: ents commented on the need for a different overall method of developing
a
softvare than typical Fortran developments, including additional concen-
.. tration on data and increased design formality when dealing with Ada
-~ development. These respondents insisted that once this Ada experience base
Qf is achieved, Ada can be use effectively.
.. The response to the applicability of Ada to various program types
-~ could be predicted based on the respondent’s experience with Ada. Those
$4 vith positive experiences stated it could be used successfully with almost
v, .
any application. Those respondents having negative experiences saw Ada as
8 useful for only a limited amount of applications, typically non-real-time
:$ applications.
L2
\n‘
\J
o The feature of Ada most distressing to the respondents group was the
- Ada tasking provisions. The most negative felt they would never work,
fj vhile others were of the opinion that the tasking features just needed
i maturity.
-
Overall, strong responses in either direction seemed to follow the
:j respondent’s initial conceptions. If the respondent anticipated problems
- in a particular area, he usually found them. Respondents who approached a
o problem from the viewpoint of making it work usually received better than
expected results.
.
jt 3.4 INDIVIDUAL INTERVIEW SUMMARIES
.,
- This section summarizes the interviews. It attempts to capture the
overall tone of the individual interviews in a few sentences. The names of
.
L
~
RN
N 6
ST N TR N T AT T

AT AR TR T AN T TR AR AWE NN RN G L LT N W N

the experts have been removed and the job descriptions made vague to hide
identities. The attributed interviews are in Appendix E of this document,

|
|
|
3

delivered under separate cover. Appendix E is not for distribution.

Y
Pl el

3.4.1 EXPERT A

Expert A, a Chief Engineer for a major defense contractor, is also
the author of a well-known software development cost and schedule estimat-
ing model.

i

The immediate result of using Ada on most large software projects
X will be to increase costs due to immature software tools, poor support
environments, and costs of training. The major productivity gains will
probably come from the environment rather than the language. In the long
run, Ada-related gains will be typically 30 percent for development and
¥ 50 percent for life cycle support.

The software development life cycle will probably change, with more
effort spent in design and less required later in the cycle. Failing to
provide adequate time for preliminary or detailed design could have greater
negative impact on an Ada project than a project using another language.

Requiring software to be reusable may increase development costs 5
to 30 percent. However, reusing code written in Ada should be cheaper than
reusing Fortran code.

A new standard is needed for counting lines of code in Ada.

The "wave" of desire for reusability was occurring at the same time

as the Ada "wave."
Vriting reusable code will be easier in Ada.

Who will be responsible for the maintenance and support of reusable

code?
7

\‘
h]
) %

a2 > - A4 - L - kg -~ - - -
N P g o R S o R o Tt A L T TP N Y
IS IEIITWIIIIN IS N I BRI IO N N A DR 'V"" AT oA T A S o A S R A O E

.....

Attempting to compile the PDL prior to critical design review (CDR)
is generally not productive, concentrating on language syntax and not

design.

Graphical design tools will be helpful.

Include schedule constraints data in the data collection, particu-

larly on the up-front design phase.

3.4.2 EXPERT B

Expert B is an independent consultant and an educator specializing

in Ada-related courses.

Anyone with an aptitude for programming can learn to program in Ada.
Ada goes hand in hand with good design. Its structure helps enforce good
design principles. Since properly developed Ada is so entwined with de-
sign, design and implementation will merge. Thus, design will become high-
level implementation and implementation will become low-level design. Ada
is not tied to any one design method, but to the common principles of any
good design method (good design methods clearly define the problem faced,
data inputs and outputs, and the solution).

Current implementations of the Ada tasking model seem to be ineffi-
cient for some mission-critical application areas. Reliance on current
operating systems interfaces has decreased portability to some extent.

Ve don’'t know enough about tools to standardize today.

Ada’'s strong typing and generics features will impact costs.

To speed Ada’'s acceptance, the Government must stop granting

vaivers.

Vhile there are no good metrics to measure language training, the

enthusiasm of the staff for the Ada language will have a positive effect.

DR B AR Flalohdn SN ESSARRAN oo PP ee SR FIe s s RN

t

v v -

;’1'-‘-'-1- WE Ty TyTT Y TS O T T T

d)
¥

The core of the Ada language (Pascal subset plus exception handling)

is easily learned by almost any softwvare developer.

Design and implementation will merge, design becoming high-level

implementation and implementation becoming low-level design.
"We don’t know enough about tools to standardize."

3.4.3 EXPERT C

Expert C is an Air Force expert on Ada.

Ada projects will cost more over the next two years due to inexperi-
ence and tool immaturity. On small projects, Ada won’t be much different

than wvhat we have now. Large projects will benefit more when Ada matures.

Ada can be applied to a wide application domain. At first it will
be more successful with non-real-time applications. It will take time for
embedded applications to be adequately supported by optimized compilers and

tools.

It will be a while before many language features are used

extensively.

Strong typing will reduce some coding errors; however, design errors
will not be reduced by the language constructs themselves. These design

errors will be detected earlier in the development phases.

Managers will suggest the wuse of language subsets to avoid

inefficiencies in compilers or operating systems.
Ada is a reader’s language.

Compared to other languages we are using, writing reusable code will

be easier in Ada.

A AT T A R R RN I S~ P I - T R L Y DR R S et
e e T T T e L A L S L L e e e e e e e e e

e/

mnmwmmmvwwwwmw AN N AN A A RS AR N UVARANLY ACALUT

Designers need familiarity with Ada.

Ada PDLs will speed coding. Current tools are not of the quality
expected in production environments.

& -’.l-'.ﬁ-?‘)’.'ﬁ."ﬂ@:'ﬁlf?ﬁ;

"We suffer with any new technology."

3.4.4 EXPERT D

\
:
r.
r.

Expert D is a Systems Engineer with a major computer and software
company.

Ada is more readable and maintainable right now, when software per-
sonnel are dedicated to these goals. Ada should yield less errors per line
of code due to compiler features that find errors early in the development

cycle.

Ada-like tool sets can help any language. The point is that Ada
tools are a planned set. Thus they will likely be more cohesive.

Management will be helped by management tools that run within the
Ada environment. These tools will be able to extract management data from
Ada’s data base.

Ada can make "design on the fly" easier for small projects since

stubs are convenient.

Programmers should constrain any machine dependencies to a few
packages. Thus, most Ada code will be portable.

Type statements will reduce costs considerably by eliminating range

errors.

1.4.5 EXPERT E

Expert E is a Senior Software Cost Research Analyst for the Air

Force and formerly worked as a software engineer.

10

. o .
T AT ATRP T A
z‘-r‘ d‘ I f f.'. PORC A T

m “‘4

"
“ % '.A .4-‘\.. P.A_ .-:".‘..J_ 4"4 4~4§'

Ada sizing is difficult since the definition for lines of code is

unclear.

Ada training requires about three months with typical people.

. Requirements and preliminary design specifications should be
language-independent. Ada as a PDL is appropriate after preliminary design
review (PDR).

We should see different effort loading and schedules when Ada is
used. Violating Brooks’ law (Brooks’ law states adding more people can
impede project performance) may be possible during the coding phase, due to
Ada’s structure. Howvever, such an overloaded coding staffing plan doesn’t
make much sense, because testing must be performed with the same staff

levels as non-Ada projects.

Additional data needed includes: similarities and differences in
tools and compilers between contractors and subcontractors, funding avail-
ability, and program stretch-out issues. Additionally, more information

regarding rehosting and reuse factors is needed.

3.4.6 EXPERTS F, G, AND H

These respondents all work at an Air Force base and are deeply
involved an Ada development. Expert H is the Director, Expert F the Lead

Engineer, and Expert G a Staff Engineer. They were interviewed as a group.

If code is not reusable, Ada may be more costly due to the diffi-
culty of writing in the Ada language. So far, Ada has not been able to
meet the embedded system requirements due to poor implementation of tasking

functions and large object code sizes.

Embedded system reusability should be built into the hardware (e.g.,

firmvare) rather than as reusable software. If you specify reusability,

e AF AR

the result will probably be inefficient when embedded system requirements

must be upheld.

T v
sy, '*.-");).'{a

PP AU R R ERE AP4.. IR R T ST TN . e . T ettt
LEL{A.’A_'I.A_'JA,\-._ AA'A ¢ A‘ih" .1;1 .L‘.('A’;l.'f‘l' A-n._.g. J",l Y ‘\-"-' Py .-.‘n-l" l'.-l-‘ et e e ""\ W \ - .'-.‘ ...‘\

et et A A e

'
p)
A
v,
a
/
'l
l’
e

1 3. %" a0

s ae n 5 8

4, 4, Q¢ U XTI 1 Yl Pal, "at Tal bag Call Soi ta@ fal Mol tas Yal el tafotally el tattalatatotattatyl

Current Ada development systems can take hours to recompile when one
minor code change is made. Thus, a large machine may not be able to sup-
port more than three programmers. Therefore, a large project might require

a large capital investment in software development computer systems.

Ada is very readable. It is easier to read than to write. This

should simplify maintenance.

3.4.7 EXPERT I

Expert I is a Chief Scientist at a major defense contractor and the

author of a well-known software cost and schedule model.

Short term, the Ada learning curve will have a major impact. Long
term, if source code size is constant, Ada may reduce costs somewhat. Long
term, size and cost will remain similar to other languages. Ada is a "good

language,”" but not a panacea.

In an internal experimental project, source code size doubled and
productivity increased. However, the increased productivity was not enough
to offset code size increases. These results may be skewed because work
was performed by an Ada Research Group in a monitored environment. On any
initial experimental projects, Ada can become the goal and not the tool.
Programmers can berome enamored with the language, detracting from getting
the job done.

Use of Ada should provide fewer interface and system problems, but
Ada methods will have the greatest impact. Using Ada before PDR is not
practical. Designers need pictures (i.e., data flow diagrams, etc.) to
convey system concepts. Lack of adequate system design prior to employing
an implementation tool like Ada can be detrimental to both software devel-
opment and maintenance. Ada‘'s support environment will take four to five

years to mature.

The use of modern methods will provide most of the gains attributed
Lo Ada.

| atenhinkitl ekl Akl Tl R A R L R e o R e S B Rla el el el tal Vol Sal 00 Vb 600 S0 &2 0 050 a0 0 L AV 0N PR A aFR bl iy o iR o B0 alr o et Rt Ju¥ et tar Sab Satole® 5 _-]

Vho will be responsible for maintenance and support? This question

Do »C & &K N L.

refers to determining both who will bear the cost and who will supply the
skilled people. Given the turnover rate of enlisted personnel, they will

not be able to develop the experience needed to master Ada.

é
:
1

. Existing software cost estimation models can estimate the cost of an

Ada project as well as any other project.

We should collect data on the number and type of tools used on a

project. Also, terminal response time might become a driver when heavy

APSE use is required.

3.4.8 EXPERT J

Expert J works for a well-known firm that markets a softwvare cost

and schedule estimation model.

] Short term, Ada will be more costly, perhaps as much as 30 percent
more than later projects. The APSE cannot be fully forecast, since it is
one to two years away. (Fortran required ten to fifteen years before tools
had impact, but with Ada it will take much less time.) Using Ada as the
PDL will lowver costs. For this expert’s model calibration and estimation,
a constant expansion ratio should be used for the conversion of object

instructions to source lines of code.

Data that should be collected includes: source and machine level

’
]
N
4 instructions, application, schedule (by phase if possible), reliability,
platform, cost, personnel quality, preexisting design, any complicating
factors, and concurrent hardware development.
3.4.9 EXPERT K
Expert K is an engineer and computer scientist.
Using Ada should reduce costs up to 20 percent for projects greater
: than 1000 lines of code. Ada requires clear, concise, and unambiguous
I specification.
)
E
i 13
|

YRSy 2

y ‘JAA{J m‘_{‘.{‘_' e n._‘ . " ._"-" a {L_' [S "- ’-. I‘_'."_. :{.-".- R ".—"."

D A% 200" oiia" o' Al pliat il N g3 gt 2 fal Sl e it et A e e A e L e TR S TR POV TR T T

s

d

-

5

LY

. “You can't fake Ada." You must have a design layout from top down
or you can’t develop Ada well. If Ada is not used as a PDL, costs will be

j higher. Ada should be applied after requirements are baselined. A bad °*

: specification will cost more if the project is in Ada than in other

: languages. When Ada is used as a PDL, the design actually becomes the
code during implementation rather than requiring another complete trans-

N formation.

- Failure to develop a good design may cause a project to fail
completely.

i Ada design errors are more difficult to correct during later phases

N than for other languages.

.

- Not many people know how to test an Ada job. The relationships

; between stimulus and response are not completely understood.

‘f-

' Ada trends: Cost of documentation will drop, productivity will jump

L 3 to 1, the error rate will drop (design errors, also), reusability will be

5 a significant driver.

%

v Portability can be difficult if I/0 is involved, since machine

o dependencies may come into play.

: Staffing should be about 80 percent of a Fortran project. It is

. better to "back off" staff and stay "lean and mean."

2 Management can be a key driver of Ada projects. There is more

potential for management errors. It is especially important to control

the design architecture and visibility among modules.

{
3 .4.10 EXPERT L |
|
Expert L is the Avionics and Weapcns Systems Integration Tactical]

|

[

Software Engineering Manager for a major defense contractor.

L)
L}
L]
[+
AL
]
»

3

L S A Nl oS0 afS L AR S0 AR SRR JSa Nt et e ofa e 0 Lty it Sal 0 A b St S LN ot e Jad it e e it et S fian ke el St s B R Ry B

Initially, costs will be higher, due in part to the immaturity of
tools. Any implementation of a new language has problems. Costs should be

better in time.

Ada will be used much more for large-scale, ground-based systems
vhere timing is not critical. Tools are not currently mature enough for
airborne embedded applications; therefore, current projects tend towards

large-scale implementations.

Machine code to source expansion ratios are extremely difficult to
estimate at this time due to the wide variety among compilers and differ-

ences in run-time libraries.

Ada 1s just another language, with similar types of tools being
adapted to other languages. Ada is really a manifestation of computer
science coming of age.

Tasking provisions are inadequate. There is no way to tie tasks to
an event priority. Pragma are not enough. Also, there is no way to
require maximum delays.

Portability problems have occurred with validated compilers. Port-
ability is in the hands of compiler implementors. Compiler writers are not
understanding contractors’ needs regarding throughput and problem resolu-
tion response time. However, Ada should be more portable than other

languages due to the compiler validation process.

Initial results with Ada will not be skewed by use of the best
people, since many companies don’t consider Ada significant enough yet to

allocate best people.

The better the Ada coders, the fewer the lines of source code that
will be produced. Projects need more people who have a higher overall

(design) view of an Ada project and fewer straight coders.

Pl SN0 oV ghl P4 AL te o

M AT u o |

. a’a’a s al A"

P

- N Y N - A B 0 N O - O v,] g - " - S - 1, - - “ \» P
Ay AR 4% Patii i Sl /8 Nl el Sl e 8 . LS Ll W Wt Gl G N YR R AL R T)

It’s unsure at present if development time will be lessened by using
Ada unless the project can take advantage of reuse. There may be more

design and less coding, with no impact on testing or integration.

On reuse: Initially it will cost more to write software that is
generic--the level of documentation is higher and functionality is more
general. The overall impact will be beneficial for big contractors who

build their own internal reusable software.

Poor quality specifications are expensive regardless of implemen-
tation language, and this is probably the same with Ada. However, Ada will

point specification problems out earlier.

Using Ada as a PDL will keep costs lower. Ada should be applied to

a project after PDR. Ada does not require any design aids, but they can be
helpful.

The level of testing is important. We will NOT experience reduced
test time with Ada.

Several features of the Ada language will have cost impacts:
tasking, overloaded operators, test costs, and lack of traceability for
debugging. Debugging will be more difficult because of the unexplored
relationship between source, assembly, and machine code.

The cost of buying hardware and tools for development, and the fear

of contract penalty costs, will impact overall Ada costs.

Projects in other languages should not be cr: eorted to Ada. The
industry needs more language interfaces, especially to Jovial. 7Tnis will

allow reuse of "proven" code, particularly on embedded systems.

Additional useful data includes documentation page counts and levels
. thereof; also, the specification level requested in the RFP, first vhich

military standard, then what tailoring.

3.4.11 EXPERTS M AND N

Experts M and N market a well-known software cost and schedule

model. Expert M developed the model.

Because Ada is a big, complex language, it will have a steep learn-
ing curve; thus, short-term cost increases. Fstimations of Ada projects
are similar to Pascal and PL/I. During the 1990s, reusability will become
a significant cost reduction factor. Long term, additional reliability may

be achieved due to reuse of fully tested reused softvare.

Standard Ada tool sets will be used by the more disciplined software
organizations. They do well with any new technology. Ada must grcw to the

full APSE. This may be a stumbling block if it doesn’t.

Ada may lend itself to some . edule compression due to parallelism

during implementation of package design:.

More high-quality data is needed. Additionally, iterative cost,
time, environment, people, and system data should be collected. These
should include actual staffing and resources by month, by labor category.
Additionally, the monthly dJdefect pattern (rate and cumulative), by

severity, is needed.

y.4.12 EXPERT O

Expert O is a Senior Staff Engineer and the Principal Investigator

for the Ada C3 IRAD for a majnr defense contractor.

The potential of Ada is very positive. Overall, costs can be sig-
nificantly reduced with proper use of Ada. However, there is extra cost in
the early development. Testing of code has moved to testing of design.
The design phases are critical, with coding trivial. Integration is no
longer the driver. Ada as a PDL is a natural evolution. Ada makes proto-

typing easier. Ada should be applied to a project from the beginning.

ba* Jla® o he* Sab afia® et fat fla® et St Aa¥ fSav 5ar Sat Gut tat At el te i Jiab SRS NG SR SL AL M SR Pl Pl S LSS e A L e e e e

-

|

ORI 7o X

Ultimately, Ada will be usable for all types of projects.
Currently, 1750-based avionics projects are difficult due to performance
and memory constraints (compiler immaturity). Compilers should become

available to solve these problems.

The biggest problems are tasking and reusability.

L EESIsSsy YR

.
.

Ada promotes more reliable software. Ada projects may be able to

- v -
a
R

violate Brooks’ law (increase staffing after PDR by assigning packages to

,
5’\,'

.

different groups).

e

Size in lines of code will decrease with Ada as compared to Fortran.

It is clear that an Ada line does a lot more than a Fortran line.

-
.t
-~
W

PDR and CDR schedules should require 20 percent more time than
Fortran or Jovial projects. However the code, unit testing, and integra-
tion are reduced dramatically. The language itself provides more produc-
tivity by uncovering errors earlier in the life cycle. However, the most
improvement comes from use of the APSE and modern software engineering

techniques.

Softvare life cycle and development costs can be reduced now with
the use of Ada and a good compiler. The impact on development productivity
(lines/man-month) is hard to predict, because both size and effort will be
less. For example, if for implementing a specific capability in Ada vs
Fortran the effort is decreased by x percent and the lines are decreased by
2x percent, the cost falls but so does the productivity. Thus, the idea of

increased productivity refers to "absolute work" productivity.

Success with early projects may be somewhat skewed due to applica-
tion of best people, but future projects will benefit from the experience

of "superstars" for good ground work.

The number of data types and number of data objects would be

interesting as a sizing metric.

T e T e s T N ER P A R WA
AR S SIS E SIS

DT A c . “.4 " N, . ‘;._“'-_'--_"-.‘ .
L L e el e PR PLAT. M. AL . T

.-ttt
S
N

e o ORI E T AT MEL Y LR WL L N LT "-'IvW.".W'-"Z’K"V'n"v“’"‘.’Wl""“."m‘l"l""‘l‘

Ada COST DRIVER IMPACTS AND ISSUES

4.1 PURPOSE

The purpose of this section is to discuss the major Ada cost driver
issues and impacts identified. These impacts and issues are the key influ-

ences in the modification of the data collection forms.

4.2 DESIGN AND DEVELOPMENT

Almost all respondents identified the design phase as being espe-
cially important to a project using Ada. The only difference is the degree
to which they feel design is important.

Several experts feel that the design phase is critical to the devel-
opment. Some experts feel that failure to develop a good design may cause
a project to fail completely. One expert reminded us that a bad design can

cause serious problems in non-Ada implementations.

Ada design errors are more difficult to correct during later phases
than for other languages. In particular, the practices of "tuning" or
"patching" during integration are more difficult and time-consuming. This
is due to the interdependencies enforced by the compiler and the promotion
of top-down design by Ada (Chang-84]). There also may be more potential
payoff in improving the efficiency of analysis and validation methods than

s »
.- [.
S

in speeding up the coding activity [Boehm-82].

¥

h: Changes in the softvare development life cycle were also projected.
RP In general, design will become more important and take longer. One expert
- suggested that PDR and CDR schedules should increase by 20 percent over
%. Fortran or Jovial projects, with dramatic reductions in the code, unit
%ﬁ test, and integration schedules. One expert felt that failure to allow
;, extra time for the design of an Ada project would have an inversely propor-
f-: tional impact on project costs.

)

-

.\.

N

v W FaT
"

In addition, most respondents feel using Ada as a PDL will aid the

transition from design to implementation, eliminating one translation. Two
experts see Ada being used today as just another language, due to tool
immaturity. They do feel using Ada as a PDL may reduce costs by locating
errors earlier in the development cycle. They added that any standard

pseudo-code would be helpful in this regard.

A third feels designers need familiarity with Ada. Also, he stated
Ada PDLs will speed coding. A fourth goes even further, stating the design
and implementation will merge, design becoming high-level implementation
and implementation becoming low-level design. A fifth agrees, saying the

design becomes the code.

One expert is opposed to the use of Ada as a PDL prior to PDR. He
feels a more visual representation of the design (i.e., data flow diagrams,
etc.) is necessary at that point. A second feels that attempting to com-
pile the PDL prior to CDR is generally not productive, concentrating on
language syntax and not design. He also mentioned graphical design tools
will be helpful.

Ada may allow schedule compression due to greater parallelism during
the implementation of package designs. Two experts pointed out that it may
be possible to violate Brooks’ law after PDR or during coding, but one
pointed out that this may not be a wise staffing plan, since test staffing

levels will be the same as non-Ada projects.

One expert stated, "Nobody knows how to test an Ada job." He feels
the relationships between stimulus and response are not completely under-
stood. Another agreed that the level of testing is important. He was
adamant that test time not be reduced. The amount of time spent in test

correcting problems may be one measure of the quality of the design
{Nevell-85].

S e T e N e T N T N N N T T T e T e
T e et

_; e e SR T T AR TR VIR RS P v A T A O A A ARV

U U ARG VST R LRI AR R TIVTR IR RGNS

4.3 COST IMPACTS

Most respondents expect Ada’s goal of reduced costs to be met once
the Ada development environment matures. Initially, almost all respondents

said Ada projects will cost more.

Twvo reasons often given for increased early costs are staff inexpe-
rience and inadequate tools (an issue also raised at the AdaJUG meetings).
There will be costs for education and inefficiency until the staff becomes
fully productive. The length of time required for recompilation when a

minor change is made can require hours. Thus, a large capital investment

may be required to support an Ada development. Also, design and testing
tools are few.

Several respondents believe Ada will never offer any advantage over
prior languages. Several stated Ada may be more costly if code is not

reused, due to the difficulty of writing in the Ada language, while another

Aiaoass Briotarararw sy

Pl

expects Ada to mostly benefit large projects. He said Ada use on small

projects will not differ much from current experience with other languages.

According to those respondents seeing reduced costs for Ada proj-
ects, the savings will occur after CDR. Therefore, costs allocated to
design effort are expected to take a larger portion of the overall cost.
One said his experience (a small project without military-standard docu-
mentation requirements) showed coding became trivial and integration was no

longer a driver. Another said effort will be much more front-loaded.

Reduced costs later in the development cycle may be attributed to
the fact that the cost to fix errors increases with the stage in the life
cycle at which it is fixed [Hamer-85 and Wallis-85]. One experience seems
to indicate that errors are located earlier. Another also mentioned he

believes Ada will reduce effort at the "back end."

Ada’s potential impact on maintenance costs is a split decision,

with some of the respondents seeing increased cost and others less cost.

Two called Ada "a reader’s language." However, concern over the ability of

,{J'_..". -.. _-' -J'\‘d‘. ‘.(J' I ‘..". e '. - “.‘--. R T T
o . AL AL AT RS - SRS A e S
oy =~ -~ N - . \ e .__.A_,_._\{

NGRS

maintenance personnel to handle the complexity of the language was most

often cited as a reason for increased cost. Also, maintenance staff turn-
over was identified as a concern, giving them less time to develop an

understanding of the code.

Those foreseeing reduced maintenance costs feel that Ada allows a
more direct relationship between design and implementation, making the code
easier to understand, especially when Ada is used as the PDL. Increased
readability due to Ada’'s English-like constructs is also advanced as a

reason maintenance costs should be lowver.

A couple of modelers think that current models can be used to esti-
mate the cost of Ada developments. Estimations of Ada projects are similar
to Ada and PL/I. (At the AdaJUG meetings, a number of Ada users do not
know how to estimate the cost of Ada projects.)

4.4 SOFTWARE ENGINEERING METHODS

-y PAEPCN A RN N
. » A IO . o -
c A Ll (o .'1_.‘-4‘!.4,_; .-:'.L.a_.p"zp .P:'.OL NI M A .r"uu; * o " J.\.A}.r:'.n;\.b

The role of modern software engineering techniques may be greater
with Ada projects. Ada features alone do not ensure good software develop-
ment practices. In fact, Ada’s very power generates more difficulty in
making design decisions. Methods that aid engineers in the allocation of

function and data structures are beneficial [Roy-85].

One modeler believes the use of modern methods will provide most of
the gains attributed to Ada. An expert views modern design methods with

Ada as a coincidental coming of age for computer science.

Some believe traditional milestones may no longer be appropriate for
Ada or accurately reflect the actual state of the project. For example,
CDR may be harder to pin down. More design details might be left to be
finalized during implementation.

The criteria for meeting milestones might be different with Ada
projects. Suggested milestones include noting the point in the software

life cycle when all the packages are named, vhen all procedures are named,

[9)
ro

AR P N

T e e e e R N e T e T R R T o N T T T T T N v e Ry N LARLAR QS G A S0t g L), s

when the type statements are identified, and how many objects are defined
at those times. If milestones are changing, managers may need to respond

to those changes. (This has been mentioned at AdaJUG meetings.)

Some respondents suggested that managers accustomed to experiencing
the most difficulty during integration phase might push staff tovard inte-
gration prematurely. This will force the design phase, felt to be critical
to the success of an Ada project, to be abnormally shortened. This could
create exactly the integration problems that the manager had been attempt-

ing to avoid.

4.5 IMPACT OF EXPERIENCE, CAPABILITY, AND TRAINING

Staff experience, capability, and training may have more cost impact
on projects using Ada. Almost without exception, respondents stated modern
programming techniques and concepts will be more significant than prior
experience with other, more procedural languages. When offered a choice
between a recent college graduate with training in structured techniques
and Pascal or experienced Fortran personnel, most opted for the recent

graduate.

Also, since Ada is a relatively new language and APSEs are still
evolving, there is not a body of trained personnel. For the foreseeable
future, many projects will require staff training. One Ada teacher stated
there are no good metrics to measure language training, the enthusiasm of

the staff for the Ada language will have a positive effect.

. In addition, most respondents feel Ada requires more experience than

other languages before personnel are proficient. It is a split decision as

bi to vhether Ada syntax is more difficult to understand than other languages.
5& However, it is generally agreed that it will take longer to appreciate the
D trade-offs in determining which feature of the language is best to imple.
YR

) ment a particular algorithm.

™

.:.\

r"b

Most respondents stated that Ada will take longer to learn than

other languages, although personnel should be able to produce Ada projects

AUNVAARY T -

Hl
) }
.\
.
I.‘
.u
.
] L A R “ . - . - - . - - - - - -
S e e I T T T N R CR S SO N A S
. At ~ A T ST O R T LA AL, S BN N B S
VEPLICVETE. AN, A PEIOREIE AN A ‘A"(A‘-“E:5:5;£_£:£££_£_£;515L5;i.;;£;i:;;'3:;:;;:;',”_‘J”s-J*J*.-.=,=.\1

Lal el Sab eh Dol Gah tol Nl Caf Sof ‘b ‘el inf el ot st tal "ol et ol Satuinl Rall gt naty 0o gl afe gt alar gl aloniio g o gty ol MV d e B e el b e S el Al A b el

before mastering all the language features. Not only is the language felt
to be richer, but the tool set is more complex. This may increase the time
to proficiency even further, impacting first, second, and even future proj-
ects until a "fusion" point is reached. Hovever, one feels that anybody
can learn a "base" Ada subset that may be used to implement almost any

softwvare function.

4.6 REUSABILITY ISSUES

One of the great hopes for Ada is that future software will take
advantage of previous, reusable components, lowering development costs.
One expert noted the "wave" of desire for reusability was occurring at the
same time as the Ada "wave." Unfortunately, according to the respondents,
just using Ada for development does not assure reusability. However, two
experts feel that writing reusable code will be easier in Ada compared to

other languages we are using.

All respondents who discussed reusability feel it is more expensive
to develop software for reuse. Increased documentation and reliability
requirements were mentioned as primary cost drivers. It was suggested that
only large software developers that maintain internal software libraries
would benefit. While one expert agrees that costs will increase initially,
he feels additional costs will be nominal after personnel achieve an under-

standing of reuse issues.

The political ramifications of reusability wvere mentioned by several
experts. The question most often posed: Who will be responsible for
support? Due to these political issues, most feel the only reuse will be

contractors reusing their own code.

Part of the reusability issue is rehosting. Operating systems have
made the rehosting of Ada code difficult. Also, some Ada features perform
tasks that are usually thought to be operating system tasks. Encountering
unimplemented features in validated Ada compilers slows rehosting and thus

reusability.

\

AT P A A N I AN I N I A R N I T s

S.7 IMPACT OF LANGUAGE FEATURES

Several language features were mentioned as potentially impacting
productivity. For example: packages (collections of related programs and
data) are seen as potential productivity enhancements; overloaded operators
(the feature of giving a newv meaning to an operator, useful for defining
arithmetic for types that are not built into Ada) have mixed forecasts of
their impacts; strong typing (the restriction against mixing data type
across assignments in expressions) is seen as a productivity improvement;
and generics (a method of overcoming Ada’s sometimes overly restrictive
typing) (Saib-85] are seen as potentially dangerous. The enforcement of

inter-module dependencies by the compiler is viewed as extremely helpful.

The feature most often mentioned is Ada’'s strong typing. According
to some, this should decrease programmer-induced errors and allov them to
be discovered earlier in the development cycle. Other respondents men-
tioned the reverse side of strong typing. Type conversions are more
difficult, and the overuse of derived types can make Ada source code more
obscure and complex than necessary. It was suggested by one respondent
that, while Ada will lead to early detection of programmer errors, it will

not eliminate design and logical errors.

One expert foresees fewer interfacing and system problems. This

view has also been expressed at AdaJUG meetings.

Ada 1s supposed to be an easy language to read, easier to read than

write. This reading ease should simplify maintenance.

As discussed in Maturity Issues (Section 5.9), tasking received sig-
nificant concern from the respondents. At AdaJUG meetings it has been
suggested that tasking can create difficult debugging and integration prob-
lems. Exception handling routines can also require more expertise during

later phases.

st et avYewow e 0w oW S SRS R RS \"'w

4.8 IMPACT OF AN Ada PROGRAMMING SUPPORT ENVIRONMENT (APSE)

According to most respondents, the power of Ada will be derived not
only from the richness of the language, but the use of an APSE [Babich-83].
The respondents predicting the greatest success for Ada often view Ada and
the APSE as inseparable. (APSE is used in the context of the environment
used with the language. This is not intended to imply that there will be
one standard APSE.) Those having negative experiences with the language

were usually using Ada as simply another programming language.

Though most agreed an APSE is still in the development stage, some
respondents thought a good APSE might contribute more to the success of a
project than the Ada language itself. One mentioned an APSE directly
supporting modern development methods further enhances programmer

productivity.

Several respondents think a standardized tool package is a noble

idea, but not realistic. "We don’t know enough about tools to
standardize." One said it will be two years before tools have an impact on
costs. (He added that Fortran required 10 to 15 years before tools had

impact, but with Ada it will take much less time.)

Another suggested collecting data on the number and type of tools
used on a project. He also suggested terminal response time might become a

driver when heavy APSE use is required.

One expert expressed concern that the available APSEs do not provide
an acceptable listing showing the relationship of source to assembly to
machine code for debugging purposes. This view has been supported by other
softvare developers at AdaJUG meetings. Lack of symbolic debuggers will

keep near-term costs higher.

i .9 MATURITY ISSUES

As two experts stated, "Any implementation of a new language has
ptoblems,” and "we suffer with any newv technology.” In that respect, if

any one particular feature ot Ada came under fire during the study, it wvas

b A W W W W Wy W WAL W L Wy, W W W W W W W W WU o W W T F AT T N O T TR TR P T S T T W W RV N W WY W W W

tasking. Almost all respondents feel the current tasking implementations
are inefficient and therefore unusable. Hovever, when pressed, many
respondents feel the design of the tasking provisions in the language is

adequate.

Hovever, the opposite view has been expressed at AdaJUG meetings.
Ada lacks a suitable method of providing regularly scheduled tasks within
maximum time constraints.

Lack of efficient tasking has led some to condemn the entire lan-
guage and predict it will not succeed. Others anticipate that as compiler
writers become less concerned with passing validation and turn their

attention to optimization, this problem will go away [Van der Linden-85].

The optimization issue was explored further. Optimization is a
near-term problem. Ada does not currently meet embedded (airborne) system
needs because of large object code sizes and slow run times, while the
processors have limited memory and severe timing restrictions. Ada will be
used more for large-scale ground-based systems until these problems are

solved. Eventually, compiler writers will solve these problems.

The actual relationships between source, assembly, and machine code
are not yet appreciated, which one expert called a "lack of traceability."
Implementations can also vary widely between different compilers and oper-

ating systems.

Some respondents predicted managers will suggest the use of language

subsets to avoid inefficiencies in compilers or operating systems. Lan-
guage features that have been poorly implemented by compilers, operating 4
systems, or the hardvare may not be used. Also, more subtle features of
the language (such as generics) may be avoided. Some advanced Ada features

may be lost if there is widespread use of subsets to mimic other more

familiar languages [Hummel-B4].

- e e

AN T e TN N A
P AT ACAE AP AN AT A J'"f o

RAAAILIAIME S R

)
o .

]

\ S

P S S

. o308 oA

[I R
DA W T T e

v e - v
LA N S N S N P

Confidence in existing software libraries with proven track records
may also slow the move to Ada. There is a reluctance to translate long-

standing libraries to Ada.

it has been suggested that interfaces to other languages be further
developed to allow the use of existing libraries in other languages to
benefit current Ada projects. Projects developed in other languages should
not be converted to Ada. Instead, new features should be implemented in
Ada.

The immaturity of Ada tools was noted by most respondents. Accord-
ing to one, current tools are not of the quality expected in production
environments. Quality of the development environment is considered sig-
nificant [Roy-85). Experts think it will be three to five years before the
APSE matures.

Respondents with a positive attitude towards Ada generally feel that
Ada will mature faster if the government quits granting waivers. At the
AdaJUG, some participants believe the problems with Ada will be solved if
everyone is forced to use it. SPOs, on the other hand, only want to use
Ada if there is an implementation for their target machine; they do not

have the budget or schedule to solve language problems.

% .10 DATA COLLECTION ISSUES

Data from early projects may not accurately reflect the true impact
of Ada. Two major reasons are advanced. First, for the simple reason that
vhen a project is closely monitored, performance improves (the Hawthorne
Effect).

Second, most respondents agree first projects may involve better and
more motivated staff than typical projects. For example, some Ada research
groups will perform initial development. One modeler specifically recom-
mends against collecting data from projects involving such research groups
since Ada often becomes the goal rather than the tool and clouds the

results.

<. L. et e s ' m . . -
Lt . (R e e B
« e’ Te. e T T S T Ui P A e SR}

- - - . M o . . - . . s - - . A A
PP A Y LRV T T T S e e P SR e e et e
A S T g A P A e e A T A P I A | G N R N A P L T s A |

LA ST Y Sl

9

R N N N YA A A el LA A ARG e iR g’

’

-
v
b
E‘
’
N
4
»
b
»
b
s

Respondents disagree on the amount first projects will differ from
subsequent Ada projects. One says they can cost as much as 30 percent
more. Another feels that initial Ada projects are not significant enough
within many contractors to get the best people, as suggested above. He
attributes the difference between first and subsequent projects to the

learning curve.

4011 ITEMS RECOMMENDED FOR DATA COLLECTION

Schedule is considered to be a cost driver, especially when it is
constrained. These constraints should be collected, particularly on the
design phase, which many experts believe to be critical. Funding avail-
ability, wvhich impacts schedule, can also affect cost.

The similarities and differences in tools and compilers between
contractors and subcontractors should be collected. The number and type of
tools are of interest. Also, terminal response time might become a driver

vhen heavy APSE use is required.

Instead of a single collection, iterative collection of cost, time,
environment, people, and system data was suggested. These should include
actual staffing and resources by month and by labor category. Addition-
ally, the defect pattern (rate and cumulative), monthly, by severity, was

recommended.

There was the suggestion that a new metric is needed for measuring
size. The definition of a line of code is unclear. Also, because com-
pllers vary in efficiency, the expansion ratio is difficult to project.
One suggested metric is number of data types and number of data objects.
In addition to metrics for measuring code size, metrics for measuring

reused software are needed.

Additional useful data includes documentation page counts and levels
thereof. Also, the specification level requested in the RFP: first, which

military standard; then, what tailoring.

.......... - LI P . . . P T AR
S N N AN T T T N

el o ®o* o MR Mol »" of & 4 & R At a"a"a a S

2L 0L RS ARREAEA AL ARt St b Sl b A\ A A T i 4 N A SR A RS A RS e i a S el S o La S Tal, ol Sl Lol G § 08

RECOMMENDATIONS FOR ADDITIONAL RESEARCH

5. In addition to the actual data collection, we recommend several
other research projects. These projects can be divided into two general
areas. First are studies that will provide data for estimating software

costs. Second are studies that will help SPOs estimate costs other than
direct labor, so they can better budget the total cost of doing an Ada

development.

In the first category are costs for requirements and maintenance.
Requirements generation cost, when there is concurrent hardware develop-
ment, is a system level cost that contains both software and hardware
costs. Currently there is no attempt made to isolate the softwvare portion
of these costs. This is also true even when there is no hardwvare

development.

Lover maintenance costs is one of the hoped-for results of Ada
developments. Also, maintenance costs for software in mature higher-order
languages are hard to project. A study to determine what quality (e.g.,
open trouble repnorts and engineering change proposals and severity) and
complexity metrics at software turnover should be measured, and what opera-
tional environments influence maintenance costs should be initiated, so
that data to be collected is identified and a procedure for data collection

is in place and ready. A pilot study to generate and test hypotheses on

mature language developments would lay groundwork for the Ada effort.

BA

Current software cost estimating models fail to take a systems

LA R ¥ g

approach to cost analysis. They rely on size as the prima-y driver, and

during a project’s system definition phase, size estimates are hard to make

g and usually are not very good. This leads to underestimated costs and
" schedules.

-~ A .
® For early estimates, a model that relies on characteristics of the

= system being developed is needed. System parameters are more stable than

code size estimates and would therefore produce better early estimates.
Cost and schedule estimates could be made from code size once the project

has advanced to the point where good size estimates can be made.

The second type of study involves indirect costs such as education

and capitalization. Because there is a lack of Ada experience, staff must

be educated. SPOs will need an idea of the costs of education and the time
required to make programmers and designers proficient in Ada and modern

design methods.

Because development of Ada code requires more central processor time
and memory than current higher order languages, SPOs should expect much
higher capitalization costs. There should be a document that quantifies
these costs by development environment type and also contrasts the capa-

bilities and benefits of the different environments.

We recommend a tools study be performed. This study will explore
the history of software tools and development methods and their impacts on
productivity, and identify the trends in productivity gains. This infor-
mation will be combined with exploration of expected advances, especially
with respect to Ada Programming Support Environments. The goal will be to
project, on a time line, the improvements that can be expected due to the
improved tools and methods. This will provide cost estimators a guideline
vhen trying to account for tools in estimates of future Ada (and non-Ada)

projects.

Finally, SPOs need a resource that describes compiler performance.
There are compiler studies being done by industry, and ESD would benefit by
collecting these studies and their updates so SPOs can use them for

reference.

RN !.'.-~.‘.~,-.-\-..<.'.', -t e R P M P)
I I S P I e o L P T T R S T T o N T P | O "R ~

RO AU UURT CURUTOUTY \r\rm“wwmmmrkwmmww'l'xmd_wwwmumwuvt-T

Y

o |
o \I

pt

! ‘: |
i \
[|
L)

£

DATA COLLECTION PORM STRATEGY AND

~:, CROSS-REFERENCE TO ESD FORMS

o

v

"

At This section provides a cross-reference from the Ada data collection

N package (Appendix C) to the ESD software cost data base collection package

E; (referred to as the ESD forms). Additionally, the rationale for differ-

:{ ences between the Ada forms and the ESD forms are addressed where

-

) appropriate.

ﬁi 6.1 OVERALL CHANGES WITBIN FORMS

{Q

2 In some cases, minor heading wording changes are made for similar

" data. These are not individually identified.

N

E? 6 .1.1 MIL-STD 2167 TERMINOLOGY WITHIN FORMS
o MIL-STD 2167 terminology is used in the Ada data collection package.
;{ This causes some semantic differences between the two forms that are not
e individually identified.

ff ©.1.2 RANGES QF VALUES WITHIN FORMS

2 Since the software environment is so important to Ada and some

:3 environment data is difficult to collect precisely, several items are

{j collected as ranges, using the least, expected, and maximum values rather

Jj than single values. This technique quantifies the uncertainty. In cases
D - 0

u vhere actual values are known, the form has a place for this actual value

‘ instead of the range.

o

N

:b Additionally, this form arrangement can collect both the original
’ ?I 1} [

> estimates and the actual data to see the differences.
& |
:% 6.1.3 ADDITIONAL COST DATA TO SUPPORT CURRENT COST MODELS j
f; Several data are added to support the major software cost models as
- - of 1986. These are not all Ada-specific drivers, but are identified as

i} major software cost drivers. The ESD forms are missing several of these

” data items.

-~ 33

-

s

. e : e

-

,b _. _n". . " -* - _,. " . -_ _',-., - s - R
s 00 e e -’ n’x "". RO ,'n"-ql'l‘ % .(.;_,.\..-_ “ Sl

Rodatafiad ol 4ot Beb Aok 0.0 ub 240 bbb A Al Aol il @l 08 A i0d At] Md s e 80 00 N0t At gis gl g Big A0y gi gie A Tiate Siokel 4% SRt Ae i et o) Aaia tes i i tall, Wi, ety

6 .2 ESD FORM ABBREVIATIONS

In the cross-reference tables, the ESD forms are referred to by the

following abbreviations:

sbp Software Development Project Summary Data Form
DTC Development and Target Computer Data Form
; CPCI Computer Program Configuration Item Summary Data
S RED Resource Expenditure Data Form
. CPCIFSD Computer Program Configuration Item Function and

Sizing Detail Data Form

W 6.3 SOFTVARE DEVELOPMENT PROJECT FORM CROSS-REFERENCE
¥ Ada Ada ESD ESD ESD
Question Topic Form Question Topic
Y
X 1.1 Project Name SDP 1. Project Name
. 2. Development SDP 2. Development
: Contractor/ Contractor/
Organization Organization
3.1 Mission SDP 3. Mission
Description Description
3.2 Major SDP 3. Major
Hardware Hardware
Interfaces Interfaces
3.3 Major System SDP 3. Major System
Functions Functions
3.4 Major Softwvare SDp 3. Major Software
Functions Functions
3.5 Number of CSCIs Spp 3. Number of
CPCIs
3.6 Computer Software SDP 3. CPCI Names
Configuration
Item (CSCI) List
3.7 System User SDP 3. System User
RSN LR R T N e e T R TS

Ada Ada ESD ESD
Question Topic Form Topic
3.8 Relative Magnitude [NONE]

of the Softwvare

Effort

Vill provide information on whether the project is primarily
softvare, hardware, or a mixture.

3.9 Softwvare
Development
Standards

[NONE]

Vill help determine level of DoD standards applied to the project.

4. Project
Milestones

Military Standard 2167 terminology added.

5. Modern .
Development
Method Use

5. Modern
Development
Method Use

5. Modern
Development
Method Use

5. Modern
Development
Method Use

5. Modern
Development
Method Use

5. Modern
Development
Method Use

5. Modern
Development
Method Use

SDP

SDp

SDP

sSDp

sbp

SDP

SDp

SDp

Development
Schedule

Specification

Design

Development

Coding

Testing

Validation/
Verification
(Inspection)

Formalisms

Development practices may be an important part of Ada’'s software

engineering evolution.

Thus, specific development methods are
included to capture their impacts during development.

Both Ada-

related practices and other, less sophisticated practices are

) Vo a8 bat Lig’ TR 1 68 lan 0,8 Vg Uad g 0’ g’ 2° 0.0 a8 Da8 0,0 T O T Y Y Y TR “Qat’lag' bat “iagiel ,' (O] 448 o ., 2y

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

added. This should provide data regarding the impact of software
engineering methods on Ada. Additionally, the level of expertise
with each practice is collected, since methods may improve produc-
tivity when developers are experienced, but impede project progress
vhen they are first learned.

6. Software Quality [NONE]
Required

The data will provide a qualitative assessment of the required h
software quality. This data may be contrasted with data regarding |
the softwvare goals and costs. The following quality goals are

included:

- Usability

- Reliability

- Efficiency

- Integrity

- Testability

- Portability 1
- Correctness !
- Maintainability !
- Reusability i
- Interoperability

7. Software Change SDP 8. Software Change
History History

8. Comments [NONE] '

36

...........

Lt A A A AR SR AR A AR SRR T A R Rt e Rl ok e A R A R g te Ua ST L Sk Fal Rk Nat Sull Gal Euf U0 68 §.0 40 .0 0 A0 6 270 2 00 €200

6.4 SYSTEM LEVEL OR CSCI LEVEL DOCUMENTATION FORM CROSS-REFERENCE

Ada Ada ESD ESD ESD
Question Topic Form Question Topic
1. Project Name
and Date
2. Development
. Contractor/
Organization
3. CSCI Name if
CSCI Level
&
E 4. Document SDP 7. Documentation
e
j 4. Document CPCI 9. Documentation
o
4. Document CPCI 7. Quality of
Specification

This form replaces the documentation questions in the ESD SDP

. and CPCI forms. It uses 2167 terminology and presents a more
comprehensive list of documents. It also asks if the document
is GFD or provided to the project, whether the contractor wrote
the document, for the quality of the document, and the date the
document was completed.

P PR S - K -
RN - - et e Tt .
‘ - S e e e e T e Lt

LI L T A N I AT S A AT TR R A T T PO S TR 3

bS5

L
2]
(<
)
o
X 6.5 DEVELOPMENT COMPUTER SYSTEM AND TOOLS FORM CROSS-REFERENCE
W Ada Ada ESD ESD ESD
b~ Question Topic Form Question Topic
.
. 1.1 Development
Contractor/
Organization Name
LT 1.2 Development
3 Contractor/
. Organization Location
2. Project Name
M 3.1 Development DTC 2.1 Information
- System Attributes if different
X from target
. computer
Y 3.1 Average People DTC 2.4 Average Engrs./
. per Terminal Programmers
. per Terminal
3 3.2 Access Modes DTC 2.3 Access Modes
3.3.1 Turnaround Time DTC 2.2 Turnaround
P No Recompile Time
,: 3.3.2 Turnaround Time DTC 2.2 Turnaround
b Recompile Required Time
o
Turnaround time is subdivided to collect separate data encom-
¢ passing both the simple edits, and the time delays created
wvhen a minor change causes a major recompile (which could
g take hours). These differences may cause major differences
) within Ada developments.
}
Ld
3.3.3 Terminal Response [NONE]
o Since Ada can be more dependent on support tools, terminal
j response can play a larger role in developer productivity,
with slow terminal responses having a significant impact on
N the tool usefulness and developer morale.
3.3.4 Major Changes DTC 1.8 Virtual
per Month Machine
. Volatility
. More detail.
3.3.5 Minor Changes DTC 1.8 Virtual
g per Month Machine
& Volatility
1K
L}
i
a -y . T N T U S S T fet et

{-’ e Ra"R et M e 00 IR iy e S8 JBa Ug o fe o Ve oln- Be B Uh oyt no et At Get Rt at Jte~ Rat e e et lint Jab S Bat et av Beb Sal Sut Bev e+ Bat Sn= fab it Sat e A A st e A 0 'Fi

]
»
[}
)
»
b
’ Ada Ada ESD ESD ESD
i\ More Detail.

.

Y

Question Topic Form Question Topic B]

3.4 Hours Development [NONE |
System Operates

3.5 X Development DTC 2.9 Development
System Hours Computer
Available Resource
Availability

3.6 Development System {NONE]
Security
Classification

Development costs may be influenced by the level of security
imposed on the development computer.

T Y W RS eEmmmmw vV T F 3 YW

4. Tools SDp S. Softwvare
Development
Tools Used

Tools should impact Ada costs significantly. Ratings of specific
automated or manual (i.e. methods) tools or lack thereof, are
included to capture their impacts during development. Both Ada-
related tools and more general tools are listed for two reasons.
First, tools listed on the ESD form are added to ensure trace-
ability. Second, some fairly primitive tools may be required to
bootstrap Ada developments.

Additionally, the level of expertise and frequency with which
each tool is used is collected since tools may improve produc-
tivity wvhen developers are experienced, but impede (or only
slightly improve) project progress when they are first learned.

TR YN Y VAT VY Y OV CERwYY Y Y YT v ey

Specific life cycle phases wvhere each tool is applied to the
project is added to collect data regarding the appropriateness

! and impact of tools.

f The CSCI affected by the tool use is asked for so the effect of

: the tool on the CSCI cost can be measured.

»

! 5.1 Number of DTC 2.5 Number of

! Development Development
. Sites Sites

f 5.2 Development DTC 2.6 Development
v Computer and Site Site

; Locations Locations

:

'

]

:

e e e T T L e e T e e A

o 0" e e I N O oo L) LT, . L U A L S S o et T e e S .
S8 U . SRR, ST, M A A S S VAR L. Sy SN S e At aaa e eT TT uTe Taa a

[4

[a8 aNICAR St ol el S S R I A A P R A BA Al DA N N N e N B, R0 R g S B 'l B Al A e 0 A S S Yl Sl S " S L Sl Y ol e N L Sl l,

. Ada Ada ESD ESD ESD
Question Topic Form Question Topic
6. CSCIs Developed [NONE]
on Development
Computer

A project can have several different development computers with
different tool sets.

7. Comments [NONE]

N Y T T TV C Y CC KT D P T

- R L DR IR -
LN e N e e O, e C e

AT s . - . RERPCI .’ [S S
. . LRSI N P AR o e e e T
o W S TR G N OIS, VAL DA A W SR SOOI d Ug AL IS DTN NPT AT W W I VP I ¥ ¥ P R

+¥e whave

e e a8 ¥ w

6.6 TARGET COMPUTER SYSTEM FORM CROSS-REFERENCE

Ada Ada F3D ESD ESD

Question Topic Form Question Topic
1.1 Development
Contractor/

Organization Name

1.2 Development
Contractor/
Organization Location

2. Project Name
3.1 Target Computer DTC 1.1 Manufacturer
Manufacturer and and Model
Model Number
3.1.1 Main Memory Size DTC 1.2 Main Memory
(Vords) Size in VWords
and Vord Size
in Bytes
3.1.2 Vord Size DTC 1.2 Main Memory
Size in Vords
and Word Size
in Bytes
3.1.3 Number of [NONE]
Processors in
the Target

Multi-processor systems can cause additional levels of effort
throughout the development cycle in either Ada or non-Ada

developments.
3.1.4 Maximum Main DTC 1.3 Maximum
Memory Size Main
Memory Size
3.1.5 Virtual Memory {NONE]
Machine

Virtual memory target removes memory space constraints.

3.1.6 CPU Processing DTC 1.4 CPU
Speed (MIPS) Processing 4
Speed
3.1.7 Reserve Memory DTC 1.5 Reserve Y
Requirement Memory)

Requirement

41

- - - - . . - . - - - - - - - .) . - T ~ - e - B T " '~ e _~
. I R e e e e B I wn N

N . T e e T W e e e e L T e e e S
.mds.,,d.;.,‘,:.n.r .&'.\.AA.A I I A Ty T S S T I P T S I A e P S S .‘MA.\ ..~..~-A.).L}-L A‘L;L&-

.....

" e gk pat gt got Bae go" © @ai_fat > aav Sl Gon ot (ol gal fot Ba® S Fa¥ 8 _fat " D% fa® fut Qo fut fat \ N 8 ot bl ot gt
- WL W e 00 B 0 0o 0e o) oM - - WL W WL W e WL WL B WL WL W W W e e A AW G W W o T W, T e

Ada Ada ESD ESD ESD

Question Topic Form Question Topic
3.1.8 Reserve Timing DTC 1.6 Reserve
Requirement Timing
Requirement
3.1.9 Programming [NONE]
Languages

This data will provide information when Ada is required to
interface with other programming languages.)

3.1.10 Difference DTC 2.1 Difference
Between Betwveen \
Development and Development :
Target Computer and Target
Computer
3.1.11 Accessibility to {NONE]
Target

The target machine(s) may not be fully accessible. This data
will point out productivity differences for any type of project.
Additionally several persons have stated concerns regarding Ada
target debugging efficiency and difficulty.

3.1.12 Target Simulator [NONE]
Size

This data identifies potential memory constraints not directly
related to the total target machine size.

3.2.1 Major Changes DTC 1.8 Virtual)
per Month Machine .
Volatility "
3.2.1 Minor Changes DTC 1.8 Virtual ;
per Month Machine
Volatility ;
3.3 Concurrent DTC 1.7 Concurrent :
Development Development 3
vith Software with Software .
4. CSCIs Executed DTC 1.12 CPCIs Hosted
on Target This Computer -
5. Comments

PR i TP EPEPA L S et

R PR Lt e e et Ty T e Tata e et e et
T A Py Y AP P N N N OO R P T T N

6.7

COMPUTER SOFTWARE CONFIGURATION ITEM FORM CROSS-REFERENCE

Ada Ada ESD ESD ESD
'\ Question Topic Form Question Topic
(DROPPED] CPCI 8.8 Languages
Used
This has been moved to the Development and Target Computer
Summary Data Form to cover any cases where other languages
are interfaced with Ada.
1.1 CSCI Name CPCI 1. CPCI Name
1.2 Development
Contractor/
Organization
1.3 Project Name
2. CSCI Functional CPCI 2. Punctional
Description Description
2.1 Operating [NONE]
Environment
3.1 Milestones CPCI 3.1 Milestone
Data
3.2 Schedule CPCI 3.2 Schedule
Acceleration/ Acceleration/
Stretchout Stretchout
Assessment Assessment
- 4.1.1 Analyst CPCI 4.2 Average
= Quality Personnel
s Quality
- Percentile
4
o 4.1.2 Programmer CPCI 4.2 Average
.. Quality Personnel
o Quality
- Percentile
" 4.1.3 Team Programming CPCI 4.1.C Average
. Language Experience
- Experience Languages
) Used
at
A 4.1.4 Development CPCI 4.1.B Average
L]
) Methods Experience
‘ Experience Techniques
2 Used
.
) 43
N
.V
"'. AT AR A TRV Ly N S “ e e e - . e _
Coaln, VOVEWL S N *axxi.f_s,an-.:.l. RN R S Ry N P N

Ada Ada ESD ESD ESD
Question Topic Form Question Topic
4.1.5 Average Quality CPCI 4.1.D Average
and Experience Experience
Development Virtual
Virtual System Machine
Experience
4.1.6 Average Quality CPCI 4.1.A Average
and Experience Experience
Applications Area Applications
Experience Area
4.1.7 Support Software/ CPCI 4.1.E Average
Tools Experience Experience
Support
Software
Tools
The overall rating of the tools experience will further quantify
the Ada relationship between language and tools. Additionally,
it will provide a cross-check to the detailed tool ratings and
ensure tool usage is not misstated.
4.2 Average Formal [NONE]
Training
Some persons have stated that self-taught people will not be
able to learn Ada as readily as those who are formally trained.
This data quantifies the developers’ formal training.
4.3 Peak Designer CPCI 4.4 Peak
Staff Manloading
4.4 Peak Programmer CPCI 4.4 Peak
Staff Manloading
4.5 Peak Tester CPCI 4.4 Peak
Staff Manloading
4.6 Maximum [NONE]
Staffing Rate
4.7 Overall CPCI 4.3 Manpower
Personnel Availability
Availability
5. Reliability CPCI 5. Reliability
Requirement Requirement
6.1 Inherent CPCI 6. Complexity
Difficulty of
Application
44
‘::- . -:,,' —-,.:,.:::;' ,.~:.\:. :.."'_.:'_:._-_--,_.:: ";P'.- i.‘.. .-‘ ;;.‘;;'_.F;"r.A“‘_A\'_n\-.n‘mb--)

'-krv "““v“ww E-‘—

. ..Ah'h.} Py W \‘n;-.x."n

4, iatnl Sal Sat Nal Sat tag L Gl S Sat g el Sl ol Sap Al AR g G e B ad L Sl A Gl O AL 808 LA Sad gl S A R LA Gl i Gl Gd Goh Lot S A
A
-

.

Ada Ada ESD ESD ESD
Question Topic Form Question Topic
6.2 Inherent [NONE)

Complexity of
Data Structures

This data may provide insights into the cost impacts of Ada’s
data handling capability.

oo -,

. 6.3 System Integration [NONE]
" and Test
s,
7.1.1.1 Total Size CPCI 8.1 DSLOC
AN Excluding Excluding
F: Documentation Documentation
o
:{; 7.1.1.2 Documentation CPCI B.2 Documentation
o~ Lines Lines
N 7.1.2 Operational CPCI 8.5 Operational
T Response Response
- Requirements Requirements
o Distribution
. 7.1.3.1 Source Statement CPCI 8.6 Source
Mix Executable Statement
Type Mix
7.1.3.2 CSCI Source Code CPCI 8.4 Size
Mix Breakdown by
Operatic: as
a Percent of
Item 8.1
7.1.4.1 Memory DTC 1.10 CPU Memory
Constraint Constraint
Percent Evaluation
o, 7.1.4.2 CPU Time DTC 1.11 CPU Time
- Constraint Constraint
- Percent Evaluation
" 7.1.4.3 Real Time CPCI 8.5 Operational
Operation Percent Response
. Requirements
“»
N 7.1.4.4 Multi-Processor [NONE)
. Percent
N
A

This data code effort required to develop multi-processor
o) functions due to multi-processing requirements. It will be
useful for both Ada and non-Ada projects.

M e anih k" it W Al e adiiastite e A\ Aanl et inid T LTV N L T WV LY N AT N S N AT AT _\'_.-1‘

L!r‘.n"- L AR AR At JAat skt i ol ilied o Suh et Bl i
\
.

- o
L;
v
D
i-:
~
5
>
l"
"
Ada Ada ~ ESD ESD ESD
Question Topic Form (Juestion Topic
7.1.4.5 Multi-target (NONE]
Percent

This data identifies CPCIs that must run on multiple targets and
alerts the analyst that there may be extra effort.

7.1.5 CSCI Reused Code CPCI 8.9 Reusable Code
From Other From Other
Projects Projects

More detail.

7.2 Function Point [NONE }
Data
7.3 Size/Complexity [NONE]
Number of Ada Objects, Program Units, Layers of Program Units,
Blocks.
8.1 Total Data Base CpPCI 8.3 Data Base
Size (Words) Size in Bytes
or Characters
8.2 Total Unique CPCI 8.3 Data Base
Data Items Size in Bytes
or Characters
8.3 Total Number of CPCI 8.3 Data Base
Records Size in Bytes
or Characters
8.4 Unique Data CPCI 8.3 Data Base
Types Size in Bytes
or Characters
9. Special Display CpCIl 8.7 Special
Requirements Display
Requirements
10. Softwvare Failure CPCI 10. Software
History Failure
History

Failure history is expanded to collect not only the number

of errors, but the phase wvhen these errors are introduced.
Several persons stated we will find errors earlier in the life
cycle on Ada developments. This data should help show Ada’s
impact on reliability and software anomalies. Additionally,
this data should help assess the developer capabilities and
tools impact on reported errors.

-, ® L R I S L S S e
P N Ea “ € N n
PP

- .-- 1
” - “ . - « . - - . - . et - . - e " v, - A . N . '™ - -
RN AR A A A A A R A T S Y G R TR IR WL I LN U I A)
7 SRS AL A N N -

- -'.;-;. - =

R Sy WS

"x

N o 4
o J

LoD

Ada Ada ESD ESD ESD
Question Topic Form Question Topic
11. Software Change SDP 8. Software

History Change
History
This now measures the impact of requirement changes on the CSCI.
12.1 Development Environment
12.1.1 Resource [NONE]
Dedication
This data will quantify costing impacts of sharing development
computers and other resources.
12.1.2 Resource/Support {NONE]
Location
This data will provide insights into the productivity impacts of
the availability of expert advice and various project resources
to the developers. This may be especially important while Ada
is still new to many developers.
12.1.3 Security Level [NONE]
Security can be a major cost driver on any software project.
This data may be especially useful when comparing Ada
experimental projects with actual mission critical software.
12.1.4 Contract Type [NONE]
12.2 Specific [NONE]

Development Goals

The following potential development goals have been added to
collect data regarding differences in cost due to perceived or
real development goals:

~ Maximum Maintainability

~ Maximum Reuse of Pre-existing Softvare

~ Maximum Reusability of CSCI-Level End Products
on Future Developments

- Maximum Reusability of Top-Level CSC End Products
on Future Developments

~ Maximum Reusability of Lower-Level CSC End Products
on Future Developments

- Maximum Output Clarity

- Maximum Use of Off-the-Shelf Software

- Language/Tool/Method Evaluation

Ada Ada ESD ESD ESD
Question Topic Form Question Topic
13. Special Ada [NONE]

Features

These data will show if any Ada subsets are used within the
CSCI. This is important since many people believe that some
features are too complex or inefficient.

14. Comments

6.8 RESOURCE EXPENDITURE DATA CROSS-REFERENCE

The Resource Expenditure Data Form is unchanged from the ESD
package.

B Y Al ¥ v,
- i WL, e e W w L 2 L L N R A L A > Vet Y s e

6.9 COMPUTER SOFTWARE SIZE CROSS-REFERENCE

The ESD Computer Software Size Summary Data Form is not numbered,

thus this cross-reference lists only the differences between the Ada form
and the ESD form.

p Ada Ada ESD ESD ESD
Question Topic Form Question Topic

- 4.1 Size format CPCIFSD

The size format allows size specifications in several formats
including:

- - Source Lines of Code
- Carriage Returns
Semicolons

- PDL Lines

- Ada Statements

- Other

P dndr
!

This should help clarify the specific sizing data more completely.
4.2 CSC Size CPCIFSD
The folloving data are requested for each CSC:

- Total Size excluding Comments and Documentation
- Comments and Documentation
- Number of Machine words
- Size Reused
- Size to be Reusable
- Pre-existing Code Size
- Mods to Pre-existing
- Number of Function Points
- Number of Ada Objects
- Number of Packages
- Number of Tasks
- Number of Blocks
- Layers of Blocks
- Number of Ada Program Units
- Layers of Ada Program Units
. - Number of Ada Statements
- Language

49

" R ‘- -'-'-‘- . o .
. .-‘:-' ': ! ‘—f: :*.- w -

S Bt P ot B Rt 8 a8 b Y

BIBLIOGRAPHY

Babich, Wayne A., "Productivity Issues in the Ada Language System,” IEEE
Computer Society, IEEE Computer Society Press, Silver Spring,
Maryland, 1983.

The Ada Language System (ALS) developed by SofTech should increase
productivity by minimizing error and eliminating unnecessary work.
The environment is intended to decrease the effort required to track
and organize the components of software under construction, and to
minimize errors and regressions induced by mistakes in intra-team
coordination.

J Basili, Victor R., Katz, Elizabeth E., "Metrics of Interest in an Ada
Development," IEEE Conference, IEEE Computer Society Press, Silver
Spring, Maryland, August 1983.

Bt K M A m— = - o o — _ _ -

Basili, Victor R., Katz, Elizabeth E., Panlilio-Yap, Nora Monina, Ramsey,
Connie Loggia, and Chang, Shih, "Characterization of an Ada Softvare
Development," IEEE Conference, IEEE Computer Society Press, Silver
Spring, Maryland, September 1985.

Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc.,
Englevood Cliffs, New Jersey, 1981.

Boehm, B., "Software and Its Impact: A Quantitative Assessment," Writings
of the Revolution, YOURDON inc., New York, New York, 1982.

#

k|

There is more potential payoff in improving the efficiency of your
analysis and validation efforts than in speeding up your coding.

More thorough analysis and design more than pays for itself in reduced
testing costs.

Brooks, Fredrick P., Jr., The Mythical Man-Month, Addison Publishing
Company, Inc., Philippines, 19/5.

Buxton, J., "’/Stoneman’ Requirements for Ada Programming Support Environ-
ments," NTIS ADA-100404, February, 1980.

Buzzard, G. D. and Mudge, T. N., "Object-Based Computing and the Ada
Programming Language," Computer, March 1985.

Chang, Shih-Chio and Yau, Stephen S., "Estimating Logical Stability in
Software Maintenance," IEEE, IEEE Computer Society Press, Silver
Spring, Maryland, 1984.

’ Addresses the subject of the logical ripple effect and a new approach
. for logical ripple effect analysis (determining the effect that find-
ing one error in the source code will have).

PN T e e] o
4‘..71*.4 J&.rf".n..r\v 'A."i*.n_.m.r"'.n?.r"’.-".f- A AN AN e e NI RIRA e e ‘-.'_\';-,-“- R I NN

“

Freedman, Roy S., Programming with APSE Software Tools, Petrocelli Books,
Inc., Princeton, New Jersey, 1985.

Galorath, Daniel D., "Short and Long-term Ada Impacts," Proceedings of the
International Society of Parametric Analysts, ISPA, May 1986.

German, Steven M., "Monitoring for Deadlock and Blocking in Ada Tasking,"
IEEE Transactions on Software Engineering, Volume SE-10, Number 6,
IEEE Computer Society Press, Silver Spring, Maryland, November 1984.

Hamer, P. and Frewin, G. "Software metrics - a critical overview,” The
Softwvare Development Process State of the Art Report, Pergamon
Infotech Limited, Maidenhead, Berkshlre, England, 1985.

Cost-to-fix errors increases more or less exponentially with the stage
in the life-cycle at which it is fixed.

Helmbold D. and Luckham, D., "Debugging Ada Tasking Programs," IEEE
Computer Society 1984 Conference on Ada Applications and Environments,
IFEE Computer Soclety Press, Silver Spring, Maryland, October 1984.

Honeywell Inc., The Prggrammin Language Ada Reference Manual, Springer-
Verlag, Berlin, Heldelberg, New Yor&, 1981.

Hummel, H., Nast, M., Uthke, E., "Training Concept for the Cost-Effective
Development of Reliable Software Using the Programming Language Ada,"
Proceedings of the Third Joint Ada Europe/Ada TEC Conference,
pp. 26-28, 1984.

"The possibility of realizing the full potential of Ada’s modern
features could be lost if trainees are alloved to gain the habit of
using a subset of Ada in the style with which they are familiar in
other languages."

The TYPE of training is VERY important. Depending on the type of
softwvare to be developed, different aspects of the language should be
emphasized in the training course.

Jensen, Dr. Randall V., "Projected Productivity Impact of Near-term Ada Use
in Software System Development," Proceedings of the International
Society of Parametric Analysts, ISPA, May 195%.

Jones, Anita and Ardo, Anders, "Comparative Efficliency of Different
Implementations of the Ada Rendezvous," Proceedings of the AdaTEC
Conference on Ada, ACM, 1982.

Klumpp, Allan R., "Space Station Flight Software: Hal/S or Ada?,"
Computer, March 1985.

Litvintchouk, Steven D., Matsumoto, Allen S., "Design of Ada Systems
Yielding Reusable Components: An Approach Using Structured Algebraic
Specification," IEEE Transactions on Software Engineering, Volume

SE-10, Number 5, IEEE Computer Society Press, Silver Spring, Maryland,
September 1984.

51

T T L L A A N A A A T S T AR U TR U L TRy

Meeson, R. N., Jr., "Function-Level Programming in Ada," IEEE Computer
Society 1984 Conference on Ada Applications and Environments, October
1384.

Narfelt, Kjell-Hakan and Schefstrom, Dick, "Towards a KAPSE Database," IEEE
Conference on Ada Applications and Environments, 1EEE Computer Society
Press, Sllver Spring, Maryland, 1984.

Nevell, A., "Programmer Productivity," The Software Development Process
State of the Art Report, Pergamon Infotech Limited, Maldenhead,
Berkshire, England, 1985.

It is often said that a few hours of analysis can save hundreds of
hours of programming (and reprogramming), and there is no doubt that
productivity in testing will be one result of good analysis and
design.

Programmers in Ada should be able to become largely independent of the
"target" environment.

The additional time for analysis and design can completely absorb the
savings in programming.

Organick, E. I., Carter, T. M., Maloney, M. P., Davis, A., Hayes, A. B.,
Klass, D., Lindstron, G., Nelson, B. E., and Smith, K. F., "Transform-
ing an Ada Program Unit to Silicon and Verifying Its Behavior in an
Ada Environment: A First Experiment," IEEE Softwvare, IEEE Computer
Society Press, Silver Spring, Maryland, January 1984.

Peters, Lawrence J., Software Design: Methods & Techniques, YOURDON inc.,
New York, New York, 1981.

Privitera, J. P., "Ada Design Language for the Structured Design
Methodology," Proceedings of the AdJaTEC Conference on Ada, ACM, 1982.

Roy, D., "SEL VWorkshop 86 paper,”" Proceedings of the Tenth Annual Softwvare
Engineering Workshop, December 1985.

The quality of the development environment significantly impacts
softvare development productivity.

Even with the features of Ada, it is possible to develop poor soft-
wvare. The features will have to be closely controlled by competent
project managers because these features are powerful, hence dangerous.
Moreover, those powerful features provide another dimension of design
decision. Ve feel that a methodology that helps the software engineer
allocate function and data structures to packages and tasks is
necessary.

Ve found that Ada is sufficiently complex, that we kept learning
throughout the pilot project, and even beyond. We also found that
none of the standard training devices (seminars, books, computer-aided
instruction) could alone address the broad range of issues that really
are at the heart of the problenm.

r o I A R A Rl R A R e A LR L b gt A 00 VR R o8e e aliespier i Jas et Bed Bk B R e e e T T

In the Ada era, a comprehensive education in the softvare engineering
principles that form the basis of the Ada culture must replace ad-hoc
training in the syntactic recipes of a language.

That is why we recommend a variety of continuous education rmeasures in
our report: Assuming adequate familiarity with modern software engi-
neering practices, at least 4 person-weeks is the minimum training

. time. This time includes teaching a methodology adapted to Ada and
50 percent hands-on experiments under the supervision of an expert.

Ada should prove to be an excellent tool in the hands of competent and
properly trained software developers. It will not be a panacea, com-
pensating for inadequate methods or training, but it will be benefi-
cial if properly applied.

There will be major difficulties at BOTH ends of the programmer

competency scale. Many of the brightest programmers will tend to

produce overly complex designs, using every possible feature of the .
language; the application itself becoming a side issue, many of the N
less competent programmers will never really understand the Ada R
technology. »

Saib, Sabina, Ada: an introduction, Holt, Rinehart, Winston, New York, New
York, 1985.

Tichy, Walter F., "Adabase: A Data Base for Ada Programs,"” Proceedings of
the AdaTEC Conference on Ada, ACM, 1982.

- FA]
'l .,t ‘:\"1:' S

Urban, Joseph E., Fisher, David A., "Ada Environments and Tools," IEEE
Softwvare, IEEE Computer Society Press, Silver Spring, Maryland, March
1385.

Van Der Linden, P., "Experience with Ada," Software World, Volume 15,
Number 2, 1984.

For successful use of Ada, programmers MUST be educated.

Van der Linden, P., "Looking Forward With Ada," ACM Ada Letters, Volume V,
Number 1, July, August 1985.

| Ada is a management problem.

Early compilers may emphasize "passing" validation, more than trying
to be useful or optimizing.

Wallis, P. J. L., "Economic factors in Software Production," The Software

Development Process State of the Art Report, Pergamon Infotech
Limited, Maidenhead, Berkshire, England, 1985.

Software could be better if its development did not depend on highly
skilled manpowver.

It is the need to rework development based on faulty design decisions
vhich reduces productivity.

IS e R ST T e e - .
AN A T e e e A T e T e e e e e

- - . e P R w = . ‘."". - "-".-‘ s - X - .t .
et PAF PP I IR R T RPN Y SR W S R S S A J.-_,._'r ' ‘ ‘- ‘- ;\- .-‘-'J\ RO AT AT AP A R R

Software tools should make softwvare development more cost-effective.
Skilled programmers are a scarce resource and will continue to be so.
Development techniques which provide a path away from today’s labor-
intensive methods will permit levels of production control and docu-
mentation 1idequate to the development of truly reusable software.

Ada should help prevent some of the interface errors.

Whitaker, Col. W. A., "Three Ada Examples," Digest of Papers, IEEE COMPCON

Volf,

Wolf,

San Francisco, IEEE Computer Society Press, Silver Spring, Maryland,
Spring 1983.

This is an older article (1983). The author felt that there was "no
insurmountable training problem at the programmer level." He felt
translation of existing programs was an excellent way to bring pro-
grammers up to speed.

The more mathematical functions in the program, the easier it should
be to code in Ada, because the mathematical portion of Ada is the
closest to the other languages. His concluding question was, "Ada
makes a lot of things possible, but can we make them happen?”

Alexander L., Clarke, Lori A., and Vileden, Jack C., "An Ada Environ-
ment for Programming-in-the-large," IEEE Conference on Ada Applica-

tions and Environments, IEEE Computer Society Press, Silver Spring,
Maryland, 1984.

Alexander L., Clarke, Lori A., and Wileden, Jack C., "Ada-Based
Support for Programming-in-the-Large", IEEE Software, IEEE Computer
Society Press, Silver Spring, Maryland, March 1985.

. A P I S S T ettt At et et e e e e -t - -
R T B T T 2 NP T D N e TR IS IR AP S -

- o --' —" - -\ J‘ - ‘- q’-- .. - f - e W ‘,.
B gL RPN BRI ML . . VI TUE A IC TR Sl % o AT _:’ \I'-
U P S o Sy i gy T St Uiy I T PR T, 0 S PRI By O B0 A S A, £V P A, ¥ ¥y U)

AN SLY

Y w_w_s e

APPENDIX A

QUESTIONNAIRE

MANI VS

A T A N

PRI

”

A-1

QA

a ":)31 0

The following is the base set of questions used during interviews of soft-

vare modelers and Ada experts.

General Questions

APPENDIX A
QUESTIONNAIRE

In general, how do you feel Ada will impact the cost of a
softvare development project? Please consider small and
large projects and short- and long-term impacts.

Are you familiar with any Ada projects in progress or which
have already been completed? If yes, in what way was the use
of Ada a positive or negative experience?

Does the type of project (mission critical vs. commercial,
etc.) affect the impact of the use of Ada or the APSE?
If so, to vhat degree?

Can the size (lines of source code) of an Ada project be
estimated as well as the size of previous projects in other
languages and environments (i.e., Fortran, Jovial, etc.)?

Can standard expansion ratios for machine to source
instructions be used to predict source size?

What will be the different impacts of Ada as a language versus
Ada as a development environment (APSE)?

What trends do you expect over the next 5 years for Ada
projects? In specific, productivity, maintenance costs,
errors, or any area you feel is significant.

The following have been advanced as design considerations for
Ada. VWVould you comment on the ability of Ada or the APSE to
address these concerns:

Life-cycle support cost

Interface control

Analysis support

Version control

Management support

Multi-tasking provisions

Method independence (top down vs. bottom up, etc.)
Maintenance

Reliability

Readability

Transport across projects and computers

A-2

10

11.

12.

13.

14.

15.

16.

It has been said that, at first, Ada projects will be staffed
by the best people and be more closely monitored, which may
skew initial results. Do you agree with this statement and,
if so, what differences do you expect between "real" Ada
projects and "trial" Ada projects?

Vill Ada ease re-hosting cost? Why?

How do you see Ada being applied? A full implementation vs.
subsets, at the KAPSE, MAPSE, or APSE levels.

How will Ada affect configuration management?

What data do you feel should be collected to help determine
the cost of an Ada project?

Do you think that all or any one of the Software development
cost and schedule estimation models currently in use can
accurately estimate the cost of an Ada project? If so why?
If not, why not?

Will effort and time be impacted equally by the use of Ada or
the APSE? If not, will there be a relationship between the
impact on time and the impact on effort?

Vhat will be the impact of requiring software to be reusable?

Structured Design (Object-oriented)

1. Compared to the use of other languages and environments,
what would the cost of Ada be if structured designs were NOT
used at the beginning of the project?

2. How important to Ada and APSE use is past experience with
Structured Methods?

3. Would a poor quality specification cost more in Ada than in
another language?

4. What will be the cost and schedule impact on the requirements
specification, preliminary design, detailed design, code and
unit testing, software integration and systems integration
vhen Ada or the APSE is used?

5. Is the wvaterfall model of the software life-cycle applicable
to Ada and the APSE?

Staffing
1. What will be the effect of adding more people to an Ada

o’
w

LI Y
L P A T N

ra)

project? 1Is there a point where additional staffing is
ineffective?

A-3

o

.......

-
»

S0y

.

RO

Tl B b gF 2

’
[N

A

e b LN e

LR NENEN

2 8 A&

" 1* R v v
| Sadl Wil S PN AN AC RS A P A R ARl o 07 N i R) L3 R A A

Will Ada allov different staffing profiles (will the ability
to develop in parallel, if it exists, allow more effort vith
less schedule)?

In determining the cost of an Ada project, hov can or should
experience and training in Ada be measured?

PDL Questions

1,

2.

Can Ada be used as a preliminary design specification tool?

How will using or NOT using Ada as the PDL for the Project
impact the cost?

Vhen should Ada be applied to the Project?

Does Ada, as a design language, require any design aids?
If so, what aids? (Data flow diagrams, etc.)

¥ill the process of refinement change Ada designs? Would it
simply be a matter of filling in more and more details, or are
structural changes likely to occur?

Will Ada as a PDL be usable for the public portions of
packages, or will refinement force changes in the PDL?

Programmer Questions

1.

How much more would a "first" Ada project cost as opposed to
subsequent Ada projects?

How will Ada and the APSE affect programmer productivity?
Please consider the short- and long-term effects and the
overall cost of the project.

Will programmer portability be affected by the use of Ada or
the APSE?

Will Ada affect the management of a project? If so, how will
this impact the cost?

Debugging Questions

1.

What, if any, new and different program errors may the use of
Ada and the APSE cause? Please state the nature of these
errors and where they will be experienced.

How will this affect cost and productivity?

Vill the use of Ada and the APSE change where errors are
located in the life cycle?

Environment Questions

1. Even though Ada environments are intended to be portable, will
the implementation used affect Project cost (i.e., one
compiler vs. another, etc.) (Ease of use - Turnaround)?

2. Is the Ada desire for a standardized tool package realistic
and, if so, how will it impact costs?

Language Questions

1. What special features of Ada do you feel will have cost
impacts? (i.e., generic functions, overloaded operators,
packages, and any others which you may feel would impact
the cost)

2. Vhen converting an existing project to Ada, what impact will
various source languages have and how may it be measured?
(i.e., Jovial J-3, Jovial J-73, Fortran, CMS-2, COBOL, TACPOL,
SPL/1)

Summary Questions

1. What other factors may impact the cost of an Ada project that
we haven’t coveresd?

2. What specific pieces of data do you need that you don’t have
now?

3. VWhat specific pieces of data are superfluous to your analysis?

4. The following are factors which have been used in various cost
models (Boehm, 1981). Please indicate:

a. Which do you feel will have the greatest impact
on the cost of an Ada project?

Which do you feel will have the least impact
on the cost of an Ada project?

o

Size attributes

Source instructions
tb Object instructions
r Number of routines
r
I
D
's
-

T W N W W
ARCMEL 4

Number of data items
Number of output formats
Documentation

Number of personnel

d
-
J
-
J
.
<
"
.
'
g
»

LIV P R P

L\

P

N

)

N Program attributes
Type

J] Complexity

o Language

-~ Reuse

\ i i 3 A

N Required reliability

o

Computer attributes
1 Time constraint

< Storage constraint

: Hardware configuration
4 Concurrent hardware development
b~ Personnel attributes
o Personnel capability

) Personnel continuity

- Hardware experience
& Applications experience
N Language experience
.

_ Project attributes
2 Tools and techniques

N Customer interface

~ Requirements definition
- Requirements volatility
- Schedule

Security

5 Computer Access

- .

- Travel/rehosting

-~

j Candidate Projects For Data Collection

b, 1. What projects can you recommend for actual data collection
- during the next contract phase?

}

-

4

p

P SN

V]

=

"t g% g%

SIAAARS &

.
e n kA

P AU

ala s

APPENDIX B
RESPONDENTS

-

ALY TIRRRRAS U RIS

NIIVVYY N

2

P A A] .n.\«.\..\\m

LN LCh AR Ay

The names of the respondents have been removed to ensure
that the interviews distributed as part of this report
cannot be attributed. The respondent list has been

provided to ESD/ACCR under separate cover.

e - e - PO S ey -~ adon P S e PR S PP o |

.-.l'\‘i' Yot Cat tal ¥al b tal Yot Sat tad tal Yok Val Vat V0 0aq €l Vai V. 8i0 dag el a8 Cpd 00 baB ial PaR ak Val Sal tal on.g i catocal Naborat tal tataval cat cal

s

B

APPENDIX C

DATA COLLECTION FORMS AND INSTRUCTIONS

P AR AW S

ESD ADA’ SOFTVARE DEVELOPMENT DATA COLLECTION FORMS

> F

PROJECT SUMMARY DATA

A
I

- SYSTEM LEVEL DOCUMENTATION DATA

- DEVELOPMENT COMPUTER SYSTEM AND TOOLS DATA

- TARGET COMPUTER SYSTEM DATA

— COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA
- CSCI LEVEL DOCUMENTATION DATA

- COMPUTER SOFTVARB SIZE DATA

- RESOURCE EXPENDITURE DATA

"ADA IS A REGISTERED TRADEMARK OF THE UNITED STATES
GOVERNMENT (ADA JOINT PROGRAM OFFICR)

PP

e

ey

~ .‘-':} 31 J'J',-'IE-}(,’.’,’ff_‘-

r

Ca RS SR NN P A Sl DM

PPLS

-

i o B)

{i".'

a¥ e "

AT TR LT

1.

2.

3.
3.

.2. Major Hardware Interfaces:

.3. Major System Functions:

.4. Major Softwvare Functions:

AN N

SOFTVARE DEVELOPMENT PROJECT SUMMARY DATA FORM

Project Name: Date:

Development Contractor / Organization:

Project Description

1. Mission description:

.5. Number of CSCIs:

.6. Computer Softwvare Configuration Item (CSCI) Names:

.7. System User:

Development Contractor [] Other Commercial Company |]
Department of Defense [] Other Government Agency []

.8. Relative Magnitude of the Softwvare Effort

Percent of the entire hardware/software system development cost
allocated to softvare

.9. List the Software Development Standards that apply to this

development. (They are often listed in the contract or CPDP.)

C-3

......

‘‘‘‘‘‘‘‘‘

PRGN

SOFTVARE DEVELOPMENT PROJBCT SUMMARY DATA FORM

4. Project Milestones:

Milestone Contract Estimate Actual
Date Date Date

. Contract Award i ietin it inierionans
System Requirements Review (SRR)
System Design Review (SDR)
System Preliminary Design Review (PDR)
System Critical Design Review (CDR)
Start CSCI Integration into System
. Complete CSCI Integrationc.ocuue
Start Dev. Test & Evaluation
. Complete Dev. Test & Evaluation
.10. Start Init Operational Test & Evaluation ...
.11. Complete Init Operational Test & Evaluation
.12. Functional Configuration Audit
.13. Physical Configuration Audit
.14, Formal Qualification Review
.15. System Deliverycciviiiiiiiiinnnn

e le o BL N« NV, BF S N UUR N I

LR SR R R S SR SR S S S AT T B N

5. Modern Development Method Use
(0 = No Use; 1 = Beginning, Experimental Use; 3 = Reasonably
Experienced; 5 = Expert)

Method 6o 1 2 3 4 5
No VLo Lo Nom Hi Vhi
Structured Requirements Analysis [T T S O A S A]
Specification Type
Functionali ittt e T I (T (O T A I
Procedural ... it e S T (S T (R T [T (O O A
English i e t1rroyeroed)i)
0 R o 21 -3 < tcrYerityeoro)
Design
TOop Down ot t1recrereyeat
Bottom Up Fre1r ety
Object Oriented (T (T O O A
Iterative Enhancement (T (T O I A
Hardest First [T O Y N A A
(0 2 1 -1 <R (T (O A O T I
None

Program Design Language (PDL)
Ada ... Ce
Conventional - e A N T T A N B I A

Development
Top Down : A B
Bottom Up o col
[terative Enhancement i
Hardest Firs- . [
tther o
None

L e . ..
TR Ca e

pr T Ra R RLTLELEL ML LA T A AW AT AT T T TR T R TR Y
N

Y
-

L)
K]

..............
o

)l

y

SOFTVARE DEVELOPMENT PROJECT SUMMARY DATA FORM

0 1 2 3 4 b)
No VLo Lo Nom Hi Vhi

|
Coding 1
Structured Codetivieeririiiii e 1 T T (O T (O T I
10 4 Y3 /T T T I O O
None
Program Librarian.........ciiuiiiininininnnnnnennnn trorcreroeiri
Team Development Strategies
Lo o T3 o + frYoroeyoeroy el
Multi-person Democraticcovvvinn.. | I O O O O O O A I
Chief Programmerccivvriennnnnennnnnn. troe1roYeYyoe01)
Other . e e, 0 T T (S T [T S O |
Testing
Specification Driven iiviinnn. [T S T S A O Y]
Structure Driven i i i i treoroeyryolroedruo
Other ..ot i sttt (0 T (O T T T (O I
None
Validation/Verification (Inspection)
Valk-Throughs i, [Yoy1rdYoiloriyil
Proof of Correctnesscoviurunnnnnnnnnes tcroreoreryeyued
10 1 4 Y- [YUL Y1 0)YL 4o
None
Project Estimating and Control T1oeYy11ro1uoyy1
Rapid Prototypingc.ooiviiinreiiininnennnnnns [T N D O S S A O A
.. troyociroeytortnv
6. Softwvare Quality Required 0 1 2 j 4 5
No VLo Lo Nom Hi Vhi
6.1. Usability ... i i i, Lyt yoiroerotrruo
6.2. Reliability 0 i i i, ti1)yt 1ri v)
6.3. Efficiency it i e {11yt 001 (0
6.4. Integrity i i, (Y1 rtvynr)01
6.5. Testability i i tryero)yoeye
6.6. Portability TY1 Yyt 101y 101 101
6.7, COrT@CIM@SS .\ttt it ite ettt iy 1 T T (T Y I (|
6.8. Maintainability, [T Y T (Y (R T O T B
6.9. Reusability (T (Y O A O (A
6.1N0. Interoperability [(Y T S O A
. Softvare Change History
Number Est. Fst
Changes DSLOC Persorne.
Approved . .
Preiiminary Des:ign (C A to PDR)
Netajied Design (PDR tn ‘DR o
“ode & Debug (CDR *n Start Tes' 4 [nreg,
Test & Inrtegra‘ion (Start Thi - FyT)
“wstem Test I L FUT ta vanrtrac Fnd)

SOFTVARE DEVELOPMENT PROJECT SUMMARY DATA FORM

8. Comments:

145 oA

. 0

|V ST RT R TR TN W W Wy W LW

FENRIT

A1 Juy

IRUTETE

1t oy

uogleayjiarads weirdoiyd

jenuey 8,134

uojJIEd]J123dg adWJlIau]

uoj3e®d) j3o3ds IseqRIE

uoj3dyide3g jeuojiduny

UOTIWD]3}23dS WaIBABQNG /BAIBAS

judwndoq uBjeaq pajjviIag i1eamljog

ueld 1uamdolaaag 3aemljog

uoj193}13)123dS 1DNpoOI4 31BAY}OG

juaendog uBjsaq areg eIy

juamndog udisag oW i13iu]

uojIed}Jjd2dg sJuaMAIINbay adwjaaiug

uojiIed}jio2ds siuamaiynbay azeajjog

juasndoq j1oddng pajwifaju]l 8adinosay 131nde)

juawndoq 3daduo) jeuoriviadn

1snuwsy 110ddng IreAmi|4q

[enuel adouruuiey weafoly

[enuwK o 2ammeiBoid aiem)jos

Tenuey dji10culviq 8331845 1a2)ndwo)

19NUWY 8,138)) 31PA))OS

1enuvK #,10)v12d0 ®33184S 121ndmo)

J3i0day 31821 21wm)joSg

2INPAD0A4 183] 219¥m1}0§

uoj3dyid83q 1831 aiem)}og

uRld 183] 21€ma);j0g

Juaend0Q voy1d1iId83dQq UO81ap

juamndog uBysaq taaan-dol aiemijog

JUIBND0] [031V0) IdeJialu]

uoj19d§3139dg sjuamaiynbay 2dwjaaiu] Kasujejiaig

uo}IWd)JId3adg sJuaWaIInbay I1wAyjos Aasuje)iaig

juawndoQ 31daduo) (eruojIviadg Kiwujmyjaiy

[eNUTY S$IINPID0IJ PUP BPIPPUEIS IIEM]JUY

UR[d UCTIPN[BAG A1j[eN) 218m] 08

ued JvIsaBeusy ucjiwanB|juo) azemyjog

sadey jo
1aguny
lenoy

UCTIWDJ129ds JuamBag /BIINAY

wadey jo paiaidmo) ¢ - 1 1adoranaq papiAoly
13quny 3ieQ Lijrend Lq 10 Q49
privmy)ieq UIIITIN rjudmndog ‘v
113A27 [DSD }1 dmEN [DS)
tuojieziueBlg / 1010911U0) JuIBdOjanH] 7
T :aawg cameN 103(c14 7

WE04d NOILVINAWNOOQ

TAATT 108D 10 TAATT NALSAS

g ‘ad et tal sal & e B Rt A ' 4 B ale R°ERS'E AVE atE AY N " ‘abl'ar@ add'ah” ali 0 wild = akdh’ ol i’ N alia”
) P I A DA T AW 0% e T 28 R il " N ALMTAT R AT S ALY TN sy

DEVELOPMENT COMPUTER SYSTEM AND TOOLS DATA FORM

1. Development Contractor / Organization

1.1. Name:

.2. Location:

Project Name:

. Development System Attributes

. Development Computer Mfgr Model
. Main Memory Size (Words)civuiuererennnnenn
. Word Size (BYteS) ..ivivirierveroronnnoonanannnanns
. Maximum Main Memory Size (Words)
Is this a Virtual Memory machine (Yes or No)

CPU Processing Speed (Mips)cvvinn,
. Average number of people per terminal

1
1
1
.1.
1
1
1

[VRVSRUSH ISR IS N e
O\ W &N

3.2. Percentage of Source Instructions developed using each of the
following
access modes (Total=100%):

TR TEN LR RN VY R Y, Sy Y RO W K TN Y Y Y Y Y gy, T
(¥%) [o8] —

3.2.1. Batch)4
3.2.2. Dedicated Processor b4
3.2.3. Test Bed with High Priority b4
3.2.4. Test Bed with Low Priority X
3.2.5. Interactive b4
3.2.6. Other: X
‘
b
; 3.3. Softwvare Development System .
d .
I Estimate y
' Rating Min Most Max Actual :
leely ‘o
! 3.3.1. Turnaround Time No Recompile (hours)
3.3.2. Turnaround Time Recompile Required (hours).
3.3.3. Terminal Response (seconds)
Variable or Consistent
3.3.4. Number of Major Changes per Month
3.3.5. Number of Minor Changes per Month..........

3.4. Hours the Development System Operates

3.5. Percent of Development System Operation Hours Available to Development

Organization

3.6. Development System Security Classification Level N
N

X

~

L

h

C-8 r

LW N WY

»

seeess cre P INBN

JUABLO I JALIG W]) -uriy
JOIRINEWIS JA8 U]) ng g
erreres gadérorosd uRpsaq
c 1adhi1ojrosd syuamag by

R TR T PRIV
UOJIBILAWNVOP LA |H)
cerrerere jazhleue Ul v

108832014 JdvnBuw] udjuag
* afenBuw| uRjsap wmeidoly

cesessercs 10IBIAUAE
U0} IR IUIBNIOP HIUIWIT|NbIY
° 33zhjwuw BIUIWIInbay

veoe *** 10893>01d
a8enBue] sIluamainbay

cesessessss 222410u8
Adouanbaij/afwiano)

secsescereos Jazh[RUR
no1) @IEp apo)

13zAvuw 3adL) evieg

13x33y) 3in3onilg

e 13zh1RUR
U0} IBI0AU] IPD)

ssesscssvces uONA—ICI
09 j33luy apo)

cvssecsses 30ggad0Ad
38enBuw| puesmo)
secececersess 313333d1230]

tessessecss 3aun) weafoig

seecteses 133W1] UG INIAXY

cecessecs 12my1 VOJINIANY
*eccc 2133931) MOY} [OIIUO)

cesevecs 333927 MOY] wiINg
ceeseee 1388nqap 2}]oqmAs

cecs 3388nqap aajidea3)U)
s sseeres s e e h@l”q—ﬂg

cessesecsccecacets Jaguyn
seccccc gUOJIMO 13[qEINBY

cttesesceseises 1a1quansy
sececs 303913ud8 sdjydean
eccccccces 301912UaB
a8enBuey d1vjpomiav)
secccecs guojrdo 213} jdem)

* 103912ua8 apod 1a(jdmo)

seccccers 3031p3 BOyde1n

** 101FPd PI1231P-%PIUAS

sresrececcces o3Pl FUY]

ersesecters 303 IPA UIIIOG

AVEN (00|

. YR ELE

G e

pai1dajyy
®108)

Wd04d V1VQ ST00. (UNV WALS1IS WALNIWNOD INANJOTHARG

.
"0

PR

paen
uayp
(8-1)
(*suojrjuyjap ateds Bujyea 10j sUOJIINIIBU] 33G) 8100] BAIRAg 1ayndmo) Juamdo]Inag

duajiradxy °baayg

{ool aBee
($-0) (s-1)

?8wun
pa2iwwo)ny

aRen
1enuwy

sesesevecates Qo) Ipa JNAL

R Y - .h' el --r\nn\lln -J-.d

ASSANNS S

(Agyradey sy D O A R

(Ajroady) ejom

110dd' 8§ JuseIAvure v Ny

(43103de) sajBojopoyian puv W] aayd

e A NSNS

W04 V1IVQ STO0L ANV WALSLS ¥WHINAWOD INFWJdOTAAAA

R S PR TS SR

rrreccres gapuedus)V

* 131133A000 W INK
creeeseit s dmnp ATO@ag
crrrs 3311 0ad Juasae g
© 19z2A(euv) wde| aNuey,
ceteect Jap)lian [weicg
TECTET O NIANS][OQEAY
crrett 1O1RE) U IARAINIY
ST 108N [BAS JU €1)AL
sersesetee Jazhvue
sopIvy g rade) |
13zA[Ru® VO jpUOy Jsa]
s e s e e e -t!u.«l\-t-:-f
T otrc daTAlRUR A ey
e e Jauuw o
terrett JaOUdIIPA) HROD
N TR TR RT T
QIUBIHIEEY AU |- Ui
13zhjeur Jeanbay aduey,
13zA19uw J10da) majy g
cedemeeeea Jawaayn
UDJIIARRE A(qQelIn. any
13zAlwuER BIJUN (WO RAYY
Teeiessiaes Jayppaw apn)
st aojwaual gnys Apog
*anywroual sRauIwy Jua,
L) b:ul—&:\.!
(uogerjprdde) ewrlogy

N .
P, A

W

Al

A A

A

WP Sl S

.

Laeidion

»

P AN SN SR S S

Eﬁ

Sl Al U Pl b A e R s S 8 0 SN S 3t IR aie AR o dUa g B R a0 uath Sady ot tale el Salh el ind Ml Sl A0 Sk fah Adh Al tal Al Gl St g Toh (o Gl Gof tad S0 |

DEVELOPMENT COMPUTER SYSTEM AND TOOLS DATA FORM

5. Development Locations
5.1. Number of Development Sites
S5.2. Development Computer and Site Locations

Site Locations Computer Locations

6. List the CSCIs Developed on this Development Computer:

1. 2. 3.
4. 5. 6.
7. 7. 8.
10. 11. 12.

7. Comments

TaN Te Y

A A /AL e
AV VAP U, VTR

. - . - ~ . N - - - . -
— st st nbndats iobodofas aladada - alaledadeSata aladas halmia olosad 1 AAJ

TARGET COMPUTER SYSTEM DATA FORM

bl ia ol Bv e i

.,

A

Dj R Development Contractor / Organization
1.1. Name:
©.2. lLocation:

L3}

Frolect Name:

o)

Target System Attributes

Target Computer Manufacturer Model
Main Memory Size (Words),
Vord Size (Bytes) ... i i e
Number of Processors in the Target
Maximum Main Memory Size (Words)
Is this a Virtual Memory machine? (Yes or No)
CPU Processing Speed (Mips) e
Reserve Memory Requirement (percent)
Reserve Timing Requirement (percent)
Programming Language(s) Implementation

(if different than the development computer)
.10. Difference Between Development and Target Computer:

LW A A VY I UV R P U R O O]
Bl i R R e e
OO~ W why—

(V)
—

1.1.11. Accessibility to Target

(limited to freely accessible)............. ...
$.1.12. Target simulator Size, in words (if needed)
'), “hanges to the Target Computer System During Software Development
Estimate
Rating Min Most Max Actual
Likely
“.2.L1. Number nf Major Changes per Month
Number of Minor Changes per Month..........
‘sncurrent Hardware Development With the Software? Yes| | No[]
- ..at +he (SCis Executed on the Target Computer:
‘ 2. 3.
» o o 6. i
) - - R. 9.
B N 12.
. \
|
=-er s 4" v 're Targe' ‘nmputer, 1ts Development, Use, Availabilit:..
. \

i f + f ™ L8, W - v 4 - U o 0
L
\
:f COMPUTER SOFTWVARE CONFIGURATION ITEM SUWMARY DAT! FORM
4 1. CSCI Identification
1.1. CSCI Name: Date:
g
: 1.2. Development Contractor / Organization: o
]
:* 1.3. Project Name:
,‘d'
o
2. CSCI Functional Description:)
.
\.
N
N 2.1. Operating Environment
Producticn Center, Internally Developed [| Military Ground [|
. Production Center, Contracted Software [] Unmanned Space [|
. Military Mobile (Van or Shipboard) [] Manned Space []
- Commercial Avionics [] Mil-Spec Avionics [|
E Other
3. CSCI Schedule Data
- 3.1 Milestones
" Milestone Contract Estimate Actual
. Date Date Date
3.1.1. CSCI Development Start (Draft BS) B
3.1.2. S/V Specification Review (SSR)
3.1.3. Preliminary Design Review (PDR) L
3.1.4. Critical Design Review (CDR)
3.1.5. Start Coding/Debugging
3.1.6. Complete Coding/Debugging
3.1.7. Start Informal Test/Integration
. 3.1.8. End Informal Test/Integration
'j 3.1.9. Preliminary Qualification Test (PQT)
B 3.1.10. Test Readiness Review (TRR)cvvvevenn
- 3.1.11. Formal Qualification Test (FQT)
3.1.12. Product Specification Approval
3.1.13. Functional Configuration Audit (FCA)
. 1.1.14. Physiral Configuration Audit (PCA)
N Other. ... ittt it i ittt anrronsnans

3.2. Schedule Acceleration/Stretchout Assessment:

75X [] 75-85X% [| 86-95% [] 96-105X [] 106-115% []
116-125% [| 126-135% [] 135-160% [] >160% []

» C-13

LRURASEL ST o L

e e,
ORI
PSS ERV LY

AP TTRER

T AR}

. - +

. g

. 3 [.

B (™ Te .

. Teav . [G R R ¢
. - L] e e

. LI I T 4

. . o FI . Loey -
. - . e e

. A oerage cva I o
. . R W G " SR

« 0 F rmaL e e [mer o W
. . . rma . i - Y -
o) + ;"‘“n_ L e
+ Yeay e g er Tt
. Yeayr Prograrvme:- a4t
. reak Tester tatt
< R Max mum gt g Wy
« era,. U He .
Fetant L. e o
Yo o, \
’ mp.e«. *
£ 1. Inrerer: e ' :
A0 lnnerent mpLexit, ¢
Toohvstem Inrtegration and
“imple | |} Hesrine |

NP BAT N TR

afe . . “ -
L . -y

[«

ot o

‘e . .)

TR L i A

L Fi 1
a.-

Lt em Ty [} A -
-’ ‘ e 4

(3 - 3 3 L
‘.0‘ v *) 1 o
AR 1

AT ' M Y
Lt

IMMAR Y

-

AT A

L

Veipgp

REE IR A W ENTFLY PPN WARE T TUU W e

‘e e

. . R oA

a2 & a

P dn It I BT bt B Rf Aa’ he e’ A b A’ A hat JaP el Rt el s Ao b i At ey e i A An dnr il ath S N G B P Al Al Sod Al Aen A Aehiele S diiiand A Tl ead ek A |
.h
>

A
i
=

[WLY

COMPUTER SOPTVARE CONPIGURATION [TEM SUMMARY DATA PORM

. g v @
an A

.

-
A}
v
t

v

N

SRR ¥ P e I B « lrem ¢ 1y i2e ntnrmarion
- Cta © e et Ae - gze wrates ~ntersc -nde) | |
\ age Her v i “em: n.ons |} PDL Lines [|
Ce e [J
L] e
it ,a. Fsr.mate “urrent Estimate
" VYN Max “yn Most Max
Cve Ly Likely Acrual
AL, e

FeoLing
imenta . o

T ,mentart.oan

petar: na. Response Requirements (¥ of 7.1.1.1.; Total = 100%)

Rea. T.me b4 On-Line X
“.me ‘ns'rained X Non-Time-Critical 14

n,r e H'atemen' Mix

“rarement' Types (Y nf "~ 1. 1.1.., Total = 100%)

gl a Y Command a Y Mathematical b4

ata Manipu.,ation 'Y Dara Typing 4 Declaration %

Ada Taswing Y Invocation X

N V1 teurc-e nde Mix {(Toral Code = 100X%)

e ode Type Y Code Y Nev Design X Newv Code
perating Sys'ems i o
Iarteractive Operations ... o
Rea. Time _ommand & Control B -
ToLAne CTommunlcatlions ... _ N B
Jata Gtorage & Retrieval B o
Trring Manipulartion L.l - - o
Marhematical Operations B o
R Y X U
Grnher L. e -
) €-15
T NN TN N TN D

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM

7.1.4. Target Computer Impact on Source Code

Estimate
Rating Min Most Max Actual
Likely
7.1.4.1. Memory Constraint Percentcsc0.n
7.1.4.2. CPU Time Constraint Percent
7.1.4.3. Real-Time Operation Percent
7.1.4.4. Multi-processor Percentccovevenn
7.1.4.5. Multi-target Percentcociivvennns
7.1.5. CSCI Reused Code From Other Projects
Size Component Estimated Actual
7.1.5.1. Total Pre-Existingccccviieniiiiiivennnn.
7.1.5.2. Total Deletedcocviierininanrrnarnanans
7.1.5.3. Total Modifiedo
7.1.5.4. Percent Re-Design Effortccoevonn
7.1.5.5. Percent Re-Implementation Effort
7.1.5.6. Percent Re-Test Efforto s
7.1.5.7. List of projects which contained the re-usable code:

7.2. Function Point Data (if automated counting tool is available)
Parameter Estimated Actual

Number of INnputlsttt innevsnvensns
Number of QUELPULS ... it iiiiiier i ieinnnanacoanas
Number of Inquiriesc.c.oiiiiiiiinnnnns
Number of Data Filest iiiiviinennnenns
. Number of Interfacesceuveueeeunnnennennanns
. Total Number of Function Points

NN N N N

BRI RO RO RN
fo MRV, BV SR DR By

7.3. Size/Complexity Data (if automated counting tool is available)

7.3.1. Number of Ada Objects i
7.3.2. Number of Ada Program Units
7.3.1. Number of Layers of Ada Program Units
7.3.4. Number of Blocksot

8. Data Base Size (if automated counting tool is available)
Parameter Estimated Actual

Total Data Base Size (Words) -...........ooun.
Total Unique Data Items......... ..o,
Total Number of Recordsov....
Unique Data Twpes ... oo,

[o olRe olNe e e +]
£ L PO

e
- r TS PR AP A I PR A RN T I T -
PO AR O T A L, ol ok, N L

M oL P T A AT A Rt B RN A A S A D S et bt T e L Sl T) Sal ol f A L G UL GR bt Lt BAER AL ad &0 a0 ate a8 o' o f o8 30]

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FPORM

9. Special Display Requirements (Check 1)

Simple InpuUtS/OUTPULS vt tin i tnenneenenneennnnens
User Friendly Error Recovery and Menus
Interactive (With Pointing Device)
Complex (Such as Cad/Cam)icviereennnnnnrnnn.
Other (Indicate)

10. Software Failure History (Errors Per Phase)

Req’mnts Design Implement Total

Errors Errors Errors Errors

. Preliminary Design (C/A to PDR)....
. Detailed Design (PDR to CDR).......
. Code & Debug (CDR to Start T & I)..
. Test & Integration (Start T&I-FQT).
. System Test/IOC (FQT to Cont. End).

—
o
W W o

11. Software Change History

Number Est. Est.
Changes DSLOC Personnel
Approved +/- +/-
|
11.1. Preliminary Design (C/A to PDR)............ |
11.2. Detailed Design (PDR to CDR)..........c....
11.3. Code & Debug (CDR to Start Test & Integ)...
11.4. Test & Integration (Start T&I to FQT)......
11.5. System Test/IOC (FQT to Contract End)......
12. CSCI Development Attributes
12.1. Development Environment
Estimate
Rating Min Most Max Actual
Likely i
12.1.1. Resource Dedication (percent)
12.1.2. Resource/Support Location (miles)
12.1.3. Security Level of CSCI L
12.1.4. Contract Type

CPFP CPIF FFP FPIF OTHER
Prime Contract

Subcontract

. - - - -
e e . T T N Y Y
PRI S R NIR W I

P ," . ." -_" ." . -
2P BRI S R B R R RS

£ s 4 4 8 &

L P

e s s e 4

12

12.
12.
12.

13.

la.

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORNM

’~lppr1f1r Nevelopmernt
(Rating Scale: Nn

oals 0t They Impace
= No Emphasis Through Jh

Goal

Maximum Maintainability
Maximum Reuse of Pre-Existing S/¥W
Maximum Reusability of CSCI lLevel End
Products On Future Developments.......
Maximum Reusability of TLCSC End
Products On Future Developments

[I S I NS

(O R

ro
&

.2.5. Maximum Reusability of LLCSC End

Products On Future Developments
.6. Maximum Output Clarity
. Maximum Use of Off the Shelf S/W.......
.8. Language/Tool/Method Evaluation
Other. ... vttt i

NN
~4

Special Ada Features

Feature List Avoided
Ada Tasking

Derived Types
Generics

Overloaded Operators
Other

Other

T

Special Problems or Comments:

Develapment)

L]

Tt oAl A

——

— — p— — —
— e — — —
— s ————
— — — —— —
— o — o—
—— — ——
— ——— — —
——— ———

1f Used, is there an
Internal Standard?
(Y or N)

bl el i

]
Y
)
Y
)
[

1200)
T TTTTT T Tttt T Tt T A h

10

JENTRIE

uojiBIjjjoadg we1Roay

jenuel S, 1250

uUoj1BIJJjladg Adeid1u|

uojiedyjjrads asequieq

uojidjidsaq [wuojiodunyg

uoc}11ed]j}23dg ®ayedeqng /waIsig

juasndog udjeaq parIvIaq 218m3)0S

u®[d JuasdolaAaa(] 1Em)jOS

uoj1933J123ds 1ONpolg 219AI)OS

1uamndoq udjsag aseg wivg

juaendog uBjsag adwvjialu]

uo}1®2]3J1dads suamainbay 2d®jiaju]

uoj192j§3J23ds sjuamalnbay aieajjos

juamndog 110ddng paiwiB2ju] €3>an0E3Y 121ndMO)

juamEndoQ 1daduo) [eruojaiwaadg

1enuey 310ddng aiemmiy

[PnURY JduRUIJulvy BRaBoiy

1enuwy s, 13@ewifoad aiem)jog

{enuen djisouBeiq ®231945 1331ndwo)

[9NUEK 9,138 II8A]JOS

[enuey 9,101913dQ ®3194S 133Indwo)

310d3y 363] 218¥m330S

2inpad014 193] I1¥A1jOS

uo}3d]1083Q 1831 3I8M)jOS

U4 1821 31®m] 0§

Juaend0 uo}1d}1183(] VORI

juamndoq ulisag [aaa-dol aiem)jog

JUIWNO0Q [013U0) 3I®Jiaju]

UoJI®D}j)12ads sIUIWIIINbLIY IOW i131u] Kiwujemylaigd

u0}1182]3)103dg sJuIWIInbay d1wmljos Aiwuiejialy

Jjuaendog 3daduo) [wuojiwiadg Kiwujwj(3aigd

lenuey $21np3ID01d PUE SPIPPURIS IIPA])OS

uwid uojiIenieay L3jrend) aiem)jog

us(4 JuImaBeuwy vojIviInd]juo) azemljog
uoy1®713123dS JuaaBag/maleig

waMwy warv g0 para|deon ¢ - 1 13dojaaag papiaociy
PIRLIVE LALY 1@y ERE] >~——.=o hﬂ 10 DLU
vy FPriv@) Ny uF I I rjuaendog 'y
>‘nimHHH|ll - 113A37 10SD)Y IWey |DSD
e :uojiwzjuedig / i01dwi3uo) Judedojanag 7
Ta1e() ameN 133loag |
N904 NOILVINENNDOG THAFT IDSD 30 TEATT WRISIS

c-19

N
'y e

.

<A

R |

A B Bad i I A Bk adh S Bk v At Al A A i ie A R Sfn 2

." COMPUTER SOFTVARE S1ZE SUMMARY DATA PORM

RN Nare
o e ey e rgar.oal B
* AR3 | + —
‘. ¢ (3 cpTaan
- W L hise Foremar “nurce Line of e . generates object code) [|
’ atriage Returns | | “emicolons [| PDL Lines []

rher (Specify)

W .l s ize o USCL I USC Not oAvaratie)
CSC Name Finctinon
: Total size excluding Tomments and Do rentation
- Comment s and Doc. 7 ‘vimber of Machine Words
~ Size Reused 1ze to be Reusable
Pre existing ‘ode Size M.ds to Pre-existing
of Function Points T Number of Ada Objects
Number nt Packages T “umber of Tasks
Number ~! Blocks T ravers of Blocks o
¢ of Ada Program Units - _ayers Ada Program Units
Number ~f Ada Statements anguage -
The valies fn1 *his CSC are: Esfimates Actuals - o

SC Name Functinn

- Total size excluding Comments and Dor imentation S
~ Commen's and Doc. Sumber ot Machine wWords -
: Size Reused o ".7e 'o be Reusable
Pre.existing ~rde Size o “ods *n Pre-existing -
$ of Function Foints T “.mber of Ada Objects o
Number »t Packages B ' vimber of Tasks o
Number of Blocks I ‘avers of Blocks -
] ¢ of Ada Program Units T “avers Ada Program Unmits T
- Number ot Ada Statements Tanglage B
' The values for this CSC are: Estimate- Actuals T

(S Name: Functinn

Total size excluding Comments and v .nenvatinn
"omments and Doc. ‘oirher of Machine Words
- Size Reused S .re 'o he PReusable
. Pre-existing Code Size Mids *'n Pre-existing
of Function Points . . .~her ot Ada Objec’s B
. Number ot Packages - “wimner nf Tasks o
~ Number ot Blocks S “a.ers of Blocks
- t of Ada Program Units o “a.ers Ada Program lnits
N Number of Ada Statements CAnguage -
~ The values for this ¢SC are: Estima’e: Actuals

: " v . "» -
Carmtaimtataal A_L.IL‘A_.L.LA‘ALA_J‘..A’-n '.'--L.r-.r.l‘i. j

COMPUTER SOFTVARE SIZE SUMMARY DATA FORM

CSC Name,Function .
Total size excluding Comments and Documentation .
Comments and Doc. Number of Machine VWords "
Size Reused Size to be Reusable)
Pre-existing Code Size Mods to Pre-existing !
of Function Points Number of Ada Objects 4
Number of Packages Number of Tasks -
Number of Blocks Layers of Blocks .
of Ada Program Units Layers Ada Program Units .
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals X
CSC Name/Function ik
Total size excluding Comments and Documentation .
Comments and Doc. Number of Machine Vords f
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects g
{ Number of Packages Number of Tasks '
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units :
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals .
Y CSC Name/Function
b Total size excluding Comments and Documentation
{ Comments and Doc. Number of Machine Vords
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
¢ of Function Points Number of Ada Objects
{ Number of Packages Number of Tasks
Number ot Blocks Layers of Blocks :
* of Ada Program Units Layers Ada Program Units .
Number of Ada Statements Language)
The values for this CSC are: Estimates _ Actuals
CSC Name/Function X
Total size excluding Comments and Documentation N
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing »
8 of Furction Points Number of Ada Objects .
Number of Packages Number of Tasks .
‘ Number of Blocks Layers of Blocks .
; # of Ada Program Units Layers Ada Program Units :
» Mumber of Ada Statements Language .
} The values for this CSC are: Estimates Actuals :
' 5
. .
, .
[.
’ -
| 3
!
| .
| A
| c-21 4

e e N

. R
PR . et oo P L N T TP

. T e, RSNG|
LR IR R T T T P T R AT W R VR P T 2 e,

COMPUTER SOFTWARE SIZE SUMMARY DATA FORM

P
-

CSC Name/Function
Total size excluding Comments and Documentation

Comments and Doc. Number of Machine Words
. Size Reused Size to be Reusable
X Pre-existing Code Size Mods to Pre-existing

% of Function Points Number of Ada Objects
'~ Number of Packages Number of Tasks

Number of Blocks Layers of Blocks
. # of Ada Program Units Layers Ada Program Units
X Number of Ada Statements Language

The values for this CSC are: Estimates __ Actuals

CSC Name/Function
Total size excluding Comments and Documentation

Comments and Doc. Number of Machine Words
. Size Reused Size to be Reusable
~ Pre-existing Code Size Mods to Pre-existing
N # of Function Points Number of Ada Objects
: Number of Packages Number of Tasks
N Number of Blocks Layers of Blocks

of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language

S The values for this CSC are: Estimates ____ Actuals

v CSC Name/Function

: Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function

. Total size excluding Comments and Documentation
’ Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
_ # of Function Points " Number of Ada Objects
"\ Number of Packages Number of Tasks I
- Number of Blocks Layers of Blocks
R % of Ada Program Units Layers Ada Program Units
. Number of Ada Statements Language
The values for this CSC are: Estimates _ Actuals

C-22

- TEwTResow e R TEs T e s e s T . 0 ¥ TR - RN . TaTe T e T RN N, RNV TV W WY N WY e e WV E E W

\.‘(aﬂ_-.h_ .\l‘..- e e

COMPUTER SOFTVARE SIZR SUMMARY DATA FORM

CSC Name/Function
Total size excluding Comments and Documentation

Comments and Doc. Number of Machine VWords
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing

% of Function Points Number of Ada Objects
Number of Packages Number of Tasks

Number of Blocks Layers of Blocks

of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language

The values for this CSC are: Estimates _ Actuals

CSC Name/Function
Total size excluding Comments and Documentation

Comments and Doc. Number of Machine Vords
Size Reused Size to be Reusable R
Pre-existing Code Size Mods to Pre-existing

of Function Points Number of Ada Objects
Number of Packages Number of Tasks

Number of Blocks Layers of Blocks

% of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language

The values for this CSC are: Estlmates __ Actuals

CSC Name/Function
Total size excluding Comments and Documentation

Comments and Doc. Number of Machine Vords

Size Reused Size to be Reusable

Pre-existing Code Size Mods to Pre-existing -
% of Function Points Number of Ada Objects B
Number of Packages Number of Tasks .
Number of Blocks Layers of Blocks

of Ada Program Units Layers Ada Program Units o
Number of Ada Statements Language e
The values for this CSC are: Estimates Actuals
CSCI Total

Total size excluding Comments and Documentation -
Comments and Doc. Number of Machine Words B
Size Reused Size to be Reusable o
Pre-existing Code Size _ Mods to Pre-existing o

of Function Points ~_ Number of Ada 0Objects e
Number of Packages] Number of Tasks o
Number of Blocks " Layers of Blocks)

¢ of Ada Program Units ~ lLayers Ada Program Uni's
Number of Ada Statements Language

The values for this CSC are: Estimates Actuals

C-23

NeLN et

SRSt SAR S Rt ot St St h Ar Ao fal tel AndAnd Dl Gl Aok A Gl Al Adh Al As')

RESOURCE EXPENDITURE DATA

1 Ftote_ ' Yarme

' YD T SNEE AN cam toam

B N N : o 3 ATe

i At Moy At g . PR ¢ o MarpLer

[

SOl

BS TRRS DF s DEBUG TEeT v T D IMENT C o
ISTEM

«“BS: PoMoMOT CONFT L TR AL INT 5 TEST

AFTER
CONTRACT
AWARD

5 -
x U
1 —
Y
- —_—— —_ — —
B
-
'
t
3
» a
o
1 U
3
3 .
»
r
L
q
.
v =
' -
p

S e e T T e T T TR AT AT TR AT TE T T T W - -n

RESOURCE EXPENDITURE DATA

-
- .
-x — — - — _ -
.

W,

WSS

.

W
g
-
.
.
.
.

LINEE IO

,"_' N - I . - - . - N
o g v P PSSO S

PP T

.

RESOURCE EXPENDITURE DATA

v 8 3 P_mLE.

),

. . . .-"A -’- . ~
I ST ITIP 2.

,.".._,' o,

e . . .
R -‘_'g‘." PP IR AP S)

)

I e By

PRI,

e g

ARCH_INC SANTA
02 APR 87 CR-0134/1
F/G 12/3

OPHENT COSY

AL.

v TECOLOT!%

ET

A PLAN FOR COLLECTING ROA SOFTNARE

SC
BARBARA CA N

UNCLASSIFIED ESD-TR-87-167 F19628-84-D-0019

RO-A103 903

TRAASAN

S X Ay)

v\) “ 4 v d.fn‘ '.‘a-
f\f\.\ . [NCNTYY
LN S2LLL

(i X AY SN OX

0,580 "

o Bgy oy

4 Sl =l

= = T =

©] <
S EEE
V_.t-l_un_._pk_;n

2

2l

I

—
———

iz

INSTRUCTIONS

BSD ADA SOPTVARE DEVELOPMENT DATA COLLRCTION FORMS

(R I

Camriin g an 4

c-27

-/‘.--....- e A, W """"- ’.v. ’- t.t-. - '.. ."'.. w ‘;- .'~ . (\. a¥e '-
A <
<
¢
~
:t SOFTVARE DEVELOPMENT PROJECT SUMMARY DATA FORM INSTRUCTIONS
>
-
1. Project Name and Date
.:; Enter the name of the project and the date this form is being completed.
: 2. Development Contractor/Organization
W
b Identify the company or organization which is actually performing the
{ softwvare design and development.
ij 3. Project Description
.3j 3.1. Mission Description
-
Describe the overall mission or purpose of the system for which the
N softvare is being developed.
\I
" 3.2. Major Hardware Interfaces
i; Identify the major hardware components which the software will interface.
For example: radars, communications equipment, sensors, other embedded
e computer systems, etc.
- 3.3. Major System Functions
1? List the major functions performed by the system.
3.4. Major Softwvare Functions
kg
i List the major functions performed by the software.
L
! 3.5. Number of CSCIs
o Enter the number of Computer Software Configuration Items (CSCIs) into
ﬁ which the system is divided.
f 3.6. Computer Software Configuration Item Names
« List all of the CSCI’'s which are a part of this project.
.f 3.7. System User
i Indicate the user for whom the system is being developed.
- 3.8. Relative Magnitude of the Software Effort
il Often, softvare is a portion of a system development that includes
- hardware. Indicate the fraction of the system development cost allocated
y to software.
: .
L
>
s
Cd
W
L2
4
W
o
. Cc-28
..'-.".'-- A ,'>'.-'..<'_-'_ CRPIERNE SR R R S T S J R Sy S R S LT R S
I N A A I ST Ph PP IV, PR PPN B T T P A P T S A T A U e N O A R T P TR

A A R,

L)

SOFTVARE DEVELOPMENT PROJECT SUMMARY DATA FORM INSTRUCTIONS

3.9. Softwvare Development Standards

Indicate which DoD and individual service standards vere applied to the
softvare development.

4.1. - 4.15. Project Milestones

Identify the software milestones for the project. Enter the contract
schedule date for each applicable milestone (enter N/A if a milestone is
not applicable). If the milestone has not yet passed, enter the expected
date. Otherwvise, enter the actual date the milestone was passed. Although
these milestones represent formal contractual activities in the Department
of Defense software acquisition process, many non-defense projects will
have milestones which are equivalent to these, e.g., contract awvard is
equivalent to project start and critical design review is equivalent to
completion of detail design.

If the formal milestones are not required in the project schedule, data for
equivalent activities should be used. Definitions of these milestones are
provided in Attachment A of these instructions. Unless otherwise
indicated, the date should reflect the activity completion date. Where
available, enter the actual date of completion for the milestone; for
ongoing efforts, enter the current estimate for completion of the
milestone.

5. Modern Development Method Use

Select the rating which best describes the use of listed Modern Development
Methods.

No use of Method

Beginning, experimental use of Method
Reasonably experienced use of Method
Expert use of Method

MW~ O

6. Softwvare Quality Required

Rate the softwvare quality required for this project in each of the
categories.

6.1. Usability

Usability is the extent to which the system is convenient and practical to
use.

6.2 Reliability

Reliability is the probability that a system will satisfy its stated
operational requirements for a specified period of time.

c-29

" o]

K.~

LA

,“
AR P

-IIJJ-))

. ‘b vat ‘b Sl >aba’ , <ol tal cal Vet Abe ot “aks A Ata &Y ‘e 2% a% &°a A" '8 " ad '8 B0 o gt fut 4 g, ' A M AL o

SOFTVARR DEVELOPMENT PROJECT SUMMARY DATA FORM INSTRUCTIONS

6.3. Efficiency

Efficiency is the extent to which a system fulfills its purpose without
vasting resources.

6.4. Integrity

Integrity is the degree to which one subsystem can protect the operation of
another subsystem.

6.5. Testability

Testability is the ease with which tests can be planned, specified,
conducted, and analyzed for a system.

6.6. Portability

Portability is the extent to which a software system can be moved from one
computer to another.

6.7. Correctness

Correctness is the degree to which a system fulfills its system
requirements.

6.8. Maintainability

Maintainability is the degree to which a system facilitates the making of
modifications during it's life.

6.9. Reusability

Reusability is the degree to which selected modules from one system can be
used in another system.

6.10. Interoperability

Interoperability is the ease with which one softwvare system can be coupled
with another system.

7. Software Change History by Phase

Enter the number of changes which occurred during each completed
development phase, the net increase/decrease in the total system delivered
source lines of code count and the net increase/cecrease in the estimated
manpover for the software development effort.

If this information is available at the CSCI level, then provide the
ansvers on the CSCI forms and skip this question.

W FURN R L RN AN R ratatal bl . Sad a8 tag Aog v g 8op dal vap i p @ 7 q, D

. SOFTVARE DEVELOPMENT PROJECT SUMMARY DATA FORM INSTRUCTIONS

8. Comments

~ Please provide any additional information about events that affected this
d : softvare development effort as an aggregate. There is a separate comment
section for events that affected individual CSCIs.

* S

C S

[IR e a v

ERal Rt Tk Y R R)

P 3 1

\\‘-‘\‘-‘vv\

_ A
ARSI ISP

AN SNAAN]

v
"

T T e e Y Y N
f.'f..‘ "'-- f\l Ud w\f -F'. \I Q'.;.

.

‘.-."'.'."- N AR O N P
W - T PN R AR

FERUWURVIVIVEILY YYUSY . W WY

SYSTEM LEVEL OR CSCI LEVEL DOCUMENTATION PORM INSTRUCTIONS

This form is used to report the size and quality of the system level and
CSCI level computer software documentation. Use one copy far the system
level documentation, and additional forms for the documentation associated
with each CSCI.

Check off whether this form is being used to report system level or CSCI
documentation.

1. Supply the name of the project and the date that this form is being
filled out.

2. Identify the development contractor / organization that is developing
the softwvare system cr CSCI for which the documentation data are being
reported.

3. If the data are being reported for a CSCI, identify the CSCI.

4. For each applicable document, check whether the document was provided by
the Government or another agency, or vhether it was wvritten by the
development contractor / organization. If the document was provided and
then revritten by the softvare developer, check both columns.

Indicate the quality of the document. The rating scale is:

Very Low 1
Low 2
Nominal 3
High 4
Very High 5

[f the document was written by the development organization, indicate the
date it was completed. Completion date here implies the document was
available for use in the software development effort.

Finally, supply the estimated or actual number of pages.

It documents were produced that are not listed, list them under "Other.

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA PORM INSTRUCTIONS

1. Development Contractor / Organization
1.1. Name

Identify the company or organization vhich is actually performing the
softvare design and development using this development system.

1.2. Location

Enter the location of the company or organization vhich is actually
performing the software design and development using this development
system.

2. Project Name

Enter the name of the project.

3. Development System Attributes

3.1. Development Computer Manufacturer and Model

Enter the development computer manufacturer and the model number of the
computer.

3.1.1. Main Memory Size

Enter the main memory size, in words, for the development computer.

3.1.2. Vord Size

Enter the vord size (in bytes) of the development computer.

3.1.3. Maximum Main Memory Size

Enter the maximum main memory size, in words, for the development computer.
3.1.4. Is this a virtual memory machine? Ansver yes or no.

3.1.5. CPU Processing Speed

Enter the CPU processing speed, in millions of instructions per second
(MIPS), for the development computer.

C-33

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

3.1.6. Average Number of People Per Terminal

Enter the average number of people sharing a terminal.

3.2. Percentage of Source Instructions developed using each of the
following access modes (Total=100X).

Enter the percentage of source instructions developed using each access
mode defined below:

3.2.1. Batch

Processing of a group of items prepared or required for one or more related
operations with no provision for unscheduled interruption.

3.2.2. Dedicated Processor

The processor is completely dedicated to this development.

3.2.3. Test Bed with High Priority

Development facilities set aside for target system simulation, developers
have high priority access.

3.2.4. Test Bed with Low Priority

Development facilities set aside for target system simulation, developers
have low priority access.

3.2.5. Interactive

Usage of a computer via a terminal where each line of input is immediately
processed by the computer.

3.2.6. Other

Enter any other computer access modes used in the development of this CSCI.
and the percentage of code developed in that mode.

3.3. Software Development System

For the following questions, respond vith the range of the estimated
average value, or the actual average value.

3.3.1. Turnaround Time No Recompile

Enter the amount of time, in hours, that it takes from logon until you
receive a hard copy. This measures the time lost vhile dealing with the
development computer (logging on, commanding actions, waiting for a
response on a multi-user system, wvaiting for slow printers, delivery of

“twte 'm 8"

ChE Nl f Bt Sl W

-8, *$ad ¥ ‘ath at) aVE- ie oanAe"ata taatet e~ g nos g s et Calii® A b At i b A R R ad as s Akt e h ad s |

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA PORM INSTRUCTIONS

printouts from remote printers, etc.). It does not include the productive
time a project member may spend reading program listings, editing programs
or text, etc.

3.3.2. Turnaround Time Recompile Required

Enter the amount of time, in hours, required to compile a program.

3.3.3. Terminal Response

Indicate the number of seconds from the time you hit the Return (Enter) key
until the terminal responds. Also check whether the response time is
variable or consistent.

3.3.4. Number of Major Changes per Month

These may be changes in the program editors, compilers or other tools,
changes in the command languages, or changes in the target hardware. Each
change may cause developers to lose time due to learning the system,
changing their code, procedures, etc. Some virtual machines have been used
for many years without changes, and no changes are expected.

Indicate the average number of major changes per month. Include fractional
values.

3.3.5. Number of Minor Changes per Month

Indicate the average number of minor changes per month. Include fractional
values.

3.4. Hours the Development Computer System Operates
Indicate the daily hours of operation of the development computer system.
3.5. Percent of Development System Operation Hours Available

Enter the percentage of hours indicated in 3.4. that the development
computer will be available to the development organization.

3.6. Development System Security Classification Level

Indicate the highest security level the development computer system is
cleared to.

4. Development Computer System Tools
This question seeks information on the automated tool sets available on the

development system, and on methods used for which there was not an
implementing computer program.

Cc-35

MR N

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA PORM INSTRUCTIONS

Indicate whether an item was uses manually (i.e. a method) or as an
automated tool.

If the tool or method was used, indicate the frequency of use using the
following scale:

1 Very Low
3 Nominal
5 Very High

I1f the tool or method was used, rate the development team’s experience with
the tool or method as of the first use on this project.

No use of the tool

Beginning, experimental use of the tool
Reasonably experienced use of the tool
Expert use of the tool

If the tool or method was used, indicate the phase or phases when the tool
or method was used. (Documentation is not a phase but is included because
it is believed to be important).

Requirements Development
Preliminary Design
Detailed Design

Code and Unit Test

Test and Integration
System Test

Maintenance
Documentation

1
2
3
4
5
6
7
8

If the tool or method was used, list the CSCIs affected. Indicate the CSCI
by using the number designation from question 6.

Finally, if the tool or method has a ’'brand name’, please identify it.
5. Development Locations

5.1. Number of Development Sites

Enter the number of different development locations for this CSCI.
5.2. Development Computer and Site Locations

List the site and computer location for each separate development site.

P
e

- {.

P]

>

)‘) Pq

P AL

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA PORM INSTRUCTIONS

The tool definirtions are:

Assembler -- *ranslates a program expressed in an assembly
.anguage into object code

Assembler Nptions -- features of the assembler *that provide
additional capabilities such as listing assembler
source, listing errors, inserting debug hooks,
and collecting statistics

Body Stub Generator -- creates null bodies for specifications
requiring bodies whose bodies have yet 1o be
specified (i.e., top-down construction)

Change Impact Analyzer -- determines, for a proposed support or
enhancement operation, the impact of proposed
changes to the softwvare system.

Change Request Analyzer -- analyzes change requests to determine
necessity of the change, technical and economic
impacts, and approach to accomplishing the change

Code Auditor -- examines whether predefined rules have been
folloved (such as coding standards)

Code Interface Analyzer -- checks the interfaces betwveen coded
program elements for consistency and adherence
to predefined rules

Code Invocation Analyzer -- checks coded modules for determining
the calling relationships betveen elements

Command Language Processor -- converts command language constructs
into functions performed by an operating system

Compiler Code Generator -- transforms the intermediate language
form of a computer program into machine linguage

Compiler Options -- features of the compiler that provide
additional capabilities such as source listings,
error listing, conditional compilation, inserting
debug hooks, optimization, collecting statis-ics,
reordering compilation units, tracing, alloving
compiler or heap space

Constraint Evaluator -- generates and/or solves path input or
output constraints for determining test input ~r
for proving programs rorrect

“ontrol Flow Tracer -- records the scurce statements and nr
nranches that are execu'ed 1n a progra~ :n '"heir
execytion nrder

NP TSP TSN T U ey SR

.] ' : : .‘. . - . ‘. . '

R, IR R

s
SO B
P T T ST

e

L

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA PORM INSTRUCTIONS

overage Frequency Analyzer -- determines and assesses measures
associated with the invocation of program
structural elements to determine the adequacy of
test run. Typically, coverage measures are in
terms of statements, branches, paths, or modules
executed by certain data sets.

Cross Referencer -- logically references entities to other entities
Data Flow Analyzer -- checks the sequential patterns of definitions
and references of data, based upon the use of

ptogram control flow

Data Flow Tracer -- monitors the current, actual state of variables
in a program

Da*a Type Analyzer -- evaluates whether the domain of values
attributed to an entity is properly and consistently
defined

Debugger -- steps through a program, alloving the examination

and setting of values

Design Analyzer -- checks the interfaces betwveen designed program
elements for consistency and adherence to predefined
rules, usually based upon the contents of the design
database

es1gn Document senerator -- collects information and generates
incumentation in a military-specification format
{rr design documentation

lec.gn .anguage Processor - transforms formal design language
nnstructs .nto an internal database representation
for subsequent analysis

Lec.grn Frortarioer rapidly constructs critical functions of a
g v)
<vsrem to determine the best design approach

“se "3~ .e Asser’.~n hecker - rhecks user-embedded statements
*rhat assert relationships between elements of a
srogram. An assertion is a logical expression
‘rat spec:fies a condition or relation among the

;rrgram -ar:aties. ‘“hecking may be performed wvith
cJimbr,ic o0 ran-time dara.
O R 3 rerrrvs artual o r't, wall clock, or other

" e acsnriated w1'h executing parts of a program

fee v T e ~rnitors rthe nictorical recnrd of pregram

T a N aM WV W, ", ¥,

§

‘ DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS X
N
Formatter -- arranges text according to predefined and/or user- .:

defined conventions

Formal Verifier -- uses rigorous mathematical techniques to
prove the consistency between an algorithmic
solution and a rigorous, complete specification
of the intent of the solution

Graphics Editor -- has editing capabilities provided for graphical
data

Graphics Generator -- provides the input, construction, storage,
retrieval, manipulation, alteration, and analysis of
pictorial data

Interactive Debugger -- performs debugging activities at the
direction of a user

Intermediate Language Generator -- transforms a source program
into an intermediate representation

Interpreter -- translates a source program into some intermediate
data structure, then executes the algorithm by
carrying out each operation given in the
intermediate structure

I/0 Specification Analyzer -- analyzes the input and output
specifications in a program, usually for the
generation of test data

Line Editor -- has editing capabilities that require input of a
line number and editing function indicator

Linker -- creates a load module from one or more
independently translated object modules or load
modules by resolving cross-references among the
object modules, and possible by relocating
elements

Macro Expander -- augments instructions in a source language
wvith user-defined sequences of instructions in the
same source language

Memory Dump -- the contents of storage (or a part of storage)
for a specific purpose, such as a safeguard
against faults, or in connection with debugging

On-line Assistance Processor -- a user interface feature that is
part of the input/output process of a programming
support environment (such as error assistance,
on-line tutoring, etc.)

ettt T T AT AT AT T T A A e e m e T b . . o ..
AL IR NN e NN N T T s e e
nadn LRk SERAR L IRt AT N TR alatal st aca o -x-n*-n‘.‘n‘_'r.‘.'f".‘;".'i I AT Ny

F Tl gty

2L 4

)

23 AII I,

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA PORM INSTRUCTIONS

Physical Units Analyzer -- determines whether the units or
physical dimensions attributed to an entity are
properly defined and consistently used

Problem Report Analyzer -- analyzes problem reports for the
purpose of determining the validity of the
reported problem and corrective action

Program (Application) Generator -- constructs computer programs
using translation or interpretation, based upon
rules for data structures and control (as in 4th
generation languages)

Program Tuner -- determines what parts of a program are being
executed the most

Quality Analyzer -- measures specified quality factors for use
during the evaluation of softwvare products (and
prediction of softwvare quality) at key milestones
during development. Factors to be analyzed include:
efficiency, integrity, reliability, survivability,
usability, correctness, maintainability, verifiability,
expandability, flexibility, interoperability,
portability, and reusability.

Regression Tester -- reruns test cases which a program nas
previously executed correctly, in order to detect
2errors spawvned by changes or corrections made
during software development and maintenance

Requirements Analyzer -- checks formally stated requirements to
determine their consistency and completeness

Requirements Documentation Generator -- collects information and
generates documentation in a military-specification
format for requirements documentation

Requirements Language Processer -- transforms formal softwvare
requirements statements into an internal
database representation for subsequent analysis

Requirements Prototyper -- rapidly constructs critical functions
of a system early in the life cycle for purpose of
understanding the requirements. The constructed
code may be thrown avay.

Scanner -- examines an entity sequentially to identify key areas or
structure

Screen Editor -- has screen-oriented editing capabilities, using

cursor keys or pointing device to move around a
full screen at a time

C-40

' m a2 m

E
g

aadl
1

el
D)
.
]

Bl
[

a

WM A

I N L,
VAR AR OO

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

Sorter/Merger -- arranges items in a specific order

Source Converter -- modifies an existing program to enable it
to operate with similar functional capabilities
in a different environment

Statement Profiler -- analyzes a computer program to determine
statement types, number of occurrences of each
statement type, and the percentage of each
statement type in relation to the complete program

Structure Checker -- detects structural flaws with a program,
such as improper loop nestings, unreferenced
labels, unreachable statements, etc.

Symbolic Debugger -- performs debugging activities at the source-
language level

Symbolic Executor -- reconstructs logic and computation along
a program path by executing the path with
symbolic, rather than actual, values of data

Syntax-Directed Editor -- has editing capabilities that are sensitive
to the context in which they are applied, using
specific programming language templates based upon
syntactical inputs

Test Condition Analyzer -- processes formal requirements language

to determine data values to be examined and the

mechanisms to be used in the verification of

test results

Test Harness Generator -- produces programs that provides input
to and encapsulates outputs from a testable program
unit

Text Editor -- has editing capabilities for textual data

6. List the CSCIs developed on this development computer system.

7. Provide any comments that will further aid our understanding of the
effect of the development computer system on cost and schedule,

C-41

[

AN

o 02" g ath' e ofa™ 0e AR o0 aAh +a- gha - ard ey ot e W W W W ST N ™ 0.0 a8’ bad’ $20' b “eon Ve top tep r " Py "

TARGET COMPUTER SYSTEM DATA FORM INSTRUCTIONS

FAP I dR A

If more than one target computer system will be used, complete a separate
form for each.

o
il
.
. 1. Development Contractor / Organization
" 1.1. Name
N Identify the company or organization which is actually performing the
: software design and development using this development system.
. 1.2. Location
Enter the location of the company or organization which is actually
. performing the softwvare design and development using this development
] system.
¥
s 2. Project Name
Enter the name of the project.
b
3 3. Target System Attributes
Pl
M 3.1. Target Computer Manufacturer and Model
: List the manufacturer and model number of the target computer for this
. CSCI.
. 3.1.1. Main Memory Size
Enter the main memory size, in words, for the target computer.
3.1.2. Vord Size
. Enter the word size of the target computer.
- 3.1.3. Number of Processors in the Target
4 Enter the number of processors in the target computer.
j 3.1.4. Maximum Main Memory Size
J
" Enter the maximum main memory size, in words, for the target computer.

3.1.5. Indicate if this is a virtual memory machine. Answver yes or no.
3.1.6. CPU Processing Speed

Enter the CPU processing speed, in millions of instructions per second
(MIPS), for the target computer.

*

:C\"’\" -.:\."_’\." -x.'.'Y"-."

e I T, I R S S S S I TSI SIS TSP - N} . et e, T Tt Oy - R T
PO R A AL oAy B A N N N T T

o
u-
> TARGET COMPUTER SYSTEM DATA PORM INSTRUCTIONS
[3.1.7. Reserve Memory Requirement
Enter the reserve memory requirement for the target computer as a
: percentage of main memory size (3.1.1.).
¢
3.1.8. Reserve Timing Requirement
L X
Enter the reserve timing requirement for the target computer as a
. percentage.
:: 3.1.9. Programming Language(s) Implementation
\I
A List the programming language(s) for the target computer if they are
different or if the implementation is different from that used on the
. development computer.
W
By 3.1.10. Differences betveen Development and Target
)
,3 List the differences between the development and target computer.
o 3.1.11. Accessibility to the Target
t; Indicate the access that the development team will have to the target
T computer.
~.:
» 3.1.12. Target Simulator Size
Fe Enter the size, in words, of the target zimulator.
o
; 3.2. Changes to the Target Computer System During Development
[
~ For the following questions, respond with the range of the estimated
y average value, or the actual average value.
:f These may be changes in the program editors, compilers or other tools,
N changes in the command languages, or changes in the target hardware. Each
- change may cause developers to lose time due to learning the system,
-; changing their code, procedures, etc. Some virtual machines have been used
. for many years without changes, and no changes are expected.
"',
, 3.2.1. Number of Major Changes per Month

Indicate the arverage number'()f maior Changes pet‘lﬂonth- Includ!! fractional
b Values-
[

3.2.2. Number of Minor Changes per Month

Indicate the average number of minor changes per month. Include fractional
values.

A LGN N

e it
atetsta?

-
e
-

-

C-43

o)
Ly
A

o Ty , e A . et R I
o S R e YK s P AN T e . o A
; ; . X .

s 138

gp TARGET COMPUTER SYSTEM DATA FORM INSTRUCTIONS

- 3.3. Indicate if the target computer was developed concurrently with the
softwvare.

4. List the CSCI’'s executed on this Target Computer.

e W 4
S r LSS

5. Add any comments that will explain any unusual cost impact that can be
attributed to the use of this target computer.

EMYS

>
PR

PP 7

”
Vel

»
v
LY
-
»
L
g
3
%
-

’
C-44
« .-.'- "-‘. --Q'l v “-“ - AT U S A P SPU N S T T T L A T . ‘. LY - LY - - - . - - -,
T T A S S PP P A P P A R I N 3 ST R ..\'-_-‘.-‘-~\.~1._‘.
AR P CL L P, - Z Y >

"0 gl t A taR tal e el Yl Pad Vet Yol VaQ af Vay Vag Vol Ba tai Vag ta) vig Vi@ daq tay Y, Sat el tal g s oal Suf val Mafa®ad

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

1. CSCI Identification

1.1. CSCI Name and Date

Enter the name of the CSCI and the date the form is being completed.
1.2. Development Contractor/Organization

Identify the company or organization which is actually performing the
softvare design and development.

1.3. Project Name

Enter the name of the project containing this CSCI.

2. CSCI Functional Description

Give a brief description of the functions and purpose of the CSCI.

2.1. Operating Environment

Select the operating environment which best describes this CSCI.

3. CSCI Schedule Data

3.1. Milestones

3.1.1. - 3.1.14. Individual Milestones

Enter three dates for each milestone; the date specified in the contract,
the estimated date and the actual date (if the CSCI has reached the
milestone). If one or more of the milestones listed do not apply to this
CSCI, enter N/A (Not Applicable). For a detailed description of each
milestone, please see Attachment A.

3.2. Schedule Acceleration/Stretchout Assessment

Indicate the degree of schedule acceleration or stretchout that the
original (contract) schedule dates in 3.1. represent relative to the
normal time required to develop this CSCI. For example, if the specified

schedule is 24 months and the normal development time is estimated at 30
months, the schedule acceleration/stretchout is 80X.

U R AV RSP R R T e T e e e et e e e e e el e e . .
'_(\.‘_-.r._f\.r\f\. S 0 N e T A S W et e T T T o N

N A A S e S N SN T A Nt MR

a . s fn gt ‘o gte ot 1o atoate at .y Ul AN AN alotad ag - atoabanal tel ta) A N 2oialta TUUN gt al !

R COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

4. Personnel
) 4.1 Average Quality and Experience
\, 4.1.1. Analyst Quality

Rate the Project analysts’ performance as a team against all other
analysts, using the following scale:

15th Percentile Non-Functioning Team
: 35th Percentile Functional but Not Very Effective
) 55th Percentile Functional and Effective
J 75th Percentile Extraordinary
90th Percentile Nearly Perfect
. Analysts perform the following functions:
- Defines the softwvare architecture
- Creates preliminary design specifications
- Solves requirements or design errors
- Assists test planning and softwvare testing
: - Assists softvare integration
. - Assists softvare/hardvare integration
4.1.2. Programmer Quality
Rate hovw well the programmers working on the project will perform as a team
compared to all other programming teams in the world. Use the following
table as a guideline:
u 15th Percentile Non-Functioning Team
¥ 35th Percentile Functional but Not Very Effective
55th Percentile Functional and Effective
3 75th Percentile Extraordinary
90th Percentile Nearly Perfect

A programmer performs the following tasks:

Defines the design details, ("code-to" design, PDL, flow charts,
etc.)

Develops the programming language code

Integrates the modules (units) into the softwvare systems

P ™)
t

4.1.3. Team Programming Language Experience

Enter the average number of years of programming language experience for
the entire CSCI development team. Programming experience measures how much
similar experience the team has acquired on the same or similar languages
by the start of Full-Scale Development.

The experience must relate to the same type of language as the one being
proposed. Language experience on unrelated languages must not be counted
in this experience evaluation.

- D Y P A R S SN S P T R L R SR U UL G
O Sl L gt O L S R L A A P A LN TR DN L R R A TN o

-F

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

4.1.4. Development Methods Experience

Enter the average number of years of experience the software development
team has with the modern development methods which are being used during
the development of this CSCI.

4.1.5. Development Virtual Machine Experience

Enter the average number of years of experience the software development
team has with the virtual machine. The virtual machine includes the ‘
computer, the operating system, job control languages (commands given to d
the computer to perform some task), automated tools such as text editors, '
language compilers, etc. and all the things the developers will use to

develop the software. The virtual machine can also include the target

computer.

4.1.6. Applications Area Experience

Enter the average number of years of experience the analyst team has with
the applications area for this CSCI. Application experience is the analyst
team’s relevant experience in designing with similar applications. This
includes the team’s experience at the time of system design review (when
the softvare requirements are reviewed).

An application is considered similar if it has similar types of functions,
goals, or inherent problems and the experience will be useful during the
project.

4.1.7. Support Softwvare/Tools Experience

Enter the average number of years of experience the software development
team has with the software tools that will be used during the development
’ of this CSCI.

4.2. Average Formal Training

4.2.1. Formal Programming Language Training Days

Enter the average number of days the software development team has had in
formal programming language training in the language that will be used on
this CSCI.

- 4.2.2. Formal Development Methods Training Days

Enter the average number of days the software development team has had in
formal modern development methods training.

4.2.3. Formal Tools Training Days

Enter the average number of days the software development team has had in
form.l rools training.

-
«Sat.

...
..............

. e
aYe" e .
DY S

4

[e a0

T I R S R W
P AT S

X ", TR K VORI WA Nag @ n. ".'Il Sa¥at Yab tal d ot Vel ¥, ‘li 'L 5 g & o ““‘ﬂ‘qu‘W‘-

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

4.2.4. Formal Development System Training Days

Enter the average number of days the software development team has had in
formal development system training.

4.3. Peak Designer Staff

Enter the maximum number of people available for the designer staff.
4.4. Peak Programmer Staff

Enter the maximum number of people available for the programmer staff.
4.5. Peak Tester Staff

Enter the maximum number of people available for the test staff.

4.6. Maximum Staffing Rate

Enter the maximum rate, in persons per year, that people can be added to
the staff of this CSCI.

4.7. Overall Personnel Availability

Enter the percentage of time the development staff will be working on this
CSCI.

5. Reliability Requirement

Indicate the required reliability of the CSCI by marking the box which best
describes the reliability requirement.

Very Low 0 No Reliability requirement

Low 1 Low reliability

Nominal 2 Mil-Spec reliability

Very High 3 Reliability for high potential Loss i
Extra High 5 Risk of Loss to Human Life '

6. Complexity
6.1. Inherent Difficulty of Application
Complexity specifies the relative complexity (inherent difficulty) of the

specific softvare component. This complexity is independent of the
developer’s ability to implement the CSCI.

——e—

............
M . I o T S T I T U P T R S T T SR R P SRR SRl S g
A R T e

e G TR N WP Y T

-
>

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA PORM INSTRUCTIONS

Select a value from the table belov which best describes the complexity of

this CSCI.
Type Control
Rating Operations
Very Sequenced code with

Computational
Operations

Evaluation of
simple ex-
pressions, e.g.
AeB+C*(D-E)

Softvare Complexity Criteria

Device-dependent

Operations

Simple read,
vrite state-
ments vith
simple

Data
Management
Operations

Simple arrays
in main memory

Evaluation of
moderate level
expressions
e.g., D=SQRT
(B**2_4. *A*C)

Use of standard
math and sta-
tistical rou-
tines. Basic
matrix and
vector oper-
ations

No cognizance needed

of particular
processor of I/0

device character-
istics. 1/0 done at
GET/PUT level, no

cognizance of
erlap

I/0 processing
includes de-
vice selection
Status check-
ing and error
processing

Single file
subsetting
vith no data
structure
changes, no
data edits,
no inter-
mediate files

Multiple input
and single file
output. Simple
structural
changes simple
edits

Lov a fev non-tested
SP operators: DOs
CASEs, IF THEN-ELSEs.
Simple predicates.
Lov Straightforvard
nesting of SP
operators.
Mostly single
predicates
Nominal Mostly simple
nesting. Some
intermodule
control.
Decision
tables
High Highly nested

SP operators
vith many com-
pound predi-
cates. Queue
and stack con-
trol.
Considerable
intermodule
control

Basic numerical
analysis: aultd
variate
interpolation,
ordinary dif-
ferential
equations.
Basic trunca-
tion roundoff
concerns

Operations at
physical I1/0
level(physical
storage ad-
dress transla-
tions, seeks,
reads, etc.)
Optimized I/0
overlap

Special purpose
subroutines
activated by
data stream
contents.
Complex data
restructuring
at record

level

LI A I

M RS IR RN O RN

FAE I

P

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

LI N I

Reentrant and
recursive cod-
ing. Fixed
priority
interrupt
handling

Difficult but
structured
numerical
analysis:
near-singular
matrix equa-
tions, partial

Routines for
interrupt
diagnosis,
servicing,
masking.
Communication
line handling

Generalized
parameter -
driven file
structuring
routine. File
building, com-

} mand process-
differential ing, searc’.
i equations optimization
/
0ttt ket et sttt ettt
M Multiple re- Difficult and Device timing- Highly coupled
source sched- unstructured dependent dynamic rela-
-, uling vith numerical coding, micro- tional struc-
5 dynamically analysis: programmed tures.
N changing highly accu- operations Natural
- priorities. rate analysis language data
;- Microcode of noisy management
level control stochastic data
[6.2. Inherent Complexity of Data Structures
N Rate the complexity of the data structures which will be used in this CSCI
. using the following table:
- Very Low 0] Simple data structures
. High 3 Complex data structures
: Extra High 5 Very complex data structures
.
- 6.3. System Integration and Test
& Select the type of system integration and test which best describes the
. integration and test activities for this CSCI.
. 7. Software Size Description
7.1. Computer Software Configuration Item Size Information
. Check the size format that will be used to answer all portions of 7.1. If
?: data are available for more than one format, xerox the pages of the data

collection form and repeat the questions for each format available.
7.1.1. Total Size
7.1.1.1. Enter the total size of the code, excluding documentation. Enter

the initial estimate, and either the current estimate or the actual values
if the project is complete.

«“a 8 2

o)
-

-

(@]
]
. v
B o
4'!
A AL

B A N A PSR
?-\z\a‘zhafx_agz-A_A;J;" O RN

A AT TN T A T T M MW N W A W

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

7.1.1.2. Enter the size of the documentation.

Enter the initial estimate,
and either the current estimate or the actual values if the project is
complete.

7.1.2. Operation Response Requirements

Indicate the response mode required in the operational system using the
following guidelines:

Real-time - The software must complete processing in response to an
event prior to the occurrence of the next event. Arrival of the
data and the occurrence of events is not under the control of the
softvare and extra effort in the design, test and implementation

of the software is required to satisfy time and processing
requirements.

On-line - Softwvare in this category must respond within a human
compatible time frame, usually within a fev seconds.

Also
requires additional development effort, but not the extra level
required for real-time software.

Time-constrained - Softwvare in this category must complete processing

vithin a specified time frame which is not as restrictive as real
time or on-line requirements.

Time lines are in the order of
minutes or hours; sometimes a clock time is specified for
completion of processing.

Non-time-critical - There is no time constraint for completion of
processing for this category of softwvare.

Indicate the type of format used to determine the size of this CSCI.
7.1.3. Source Statement Mix

7.1.3.1. Statement Types

Enter the percentage of the delivered lines of source code for this CSCI
for each of the statement types listed using the following guidelines:

Logical - statements which control the execution sequences in the

program and include constructs such as IF-THEN-ELSE, DO
VHILE, DO UNTIL, CASE, GO TO or CALL.

Command - statements which direct the system softvare to perform
specific functions or to create the environment required to

support the software. These statements are generally written in
a language specific to the computer hardware.

Mathematical - statements which perform computations. This category

includes coded equations for algorithms, vector algebra, modeling,
index computation, etc.

C-51

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

BB
P S

. Data Manipulation - sratements wni-on perfor= inpyt a=1 .'put, as .e. .
as 'he storage, movemen' and ~odif
statements are a.so inc..ded.

d
icartion ~f Adarta Farmar

2ata Declarat:nn statements wh:rh are non executab.e and define "he
characterist.zs and values of the data contained in the pregra~.

(ol o b WS e Y

Data Typing - srtatements which are non-executabie and define the
N characteristics of the data <ontained in the program.

o ada Tasking - statements wvhich are written to execute Ada tasking.
. Invocation - calls to CSC modules and system procedures.
3 Indicate the type of format used to determine the size of this CSCI.

f 7.1.3.2. CSCI Source Code Mix

: Enter the percent of the deliverable lines of source code that performs
each of the categories of operation defined below: (‘X% Code’ is the
percentage of the entire CSCI size. 'X% New Design’ is the percentage of
only the nev code. ‘X New Code’ is the percentage of the newv code only)

Operating Systems - Task management. Memory management. Heavy
hardvare interface. Many interaciions. High reliability and
strict timing requirements.

" Interactive Operations - Real-time man/machine interfaces. Human
. engineering considerations and error protection are very
important.

Real-Time Command & Control - Machine-to-machine communications
under tight timing constraints. Queuing not practicable. Heavy
- hardvare interface. Strict protocol requirements.

On-Line Communications - Including machine-to-machine communications
;- with queuing allowed. Timing restrictions not as severe as vith
. real-time command and control.

", Data Storage & Retrieval - Operation of data storage devices, data base
; management, secondary storage handling, data blocking and
deblocking, hashing techniques. Primarily hardvare oriented code.

> String Manipulation - Instructions dealing with movement, manipulation
and creation of consecutive characters.

Mathematical Operations - Routine mathematical applications wvith no
A overriding constraints.

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

7.1.4. Target Computer Impact on Source Code

For the following questions, supply a range estimate or the actual value.

7.1.4.1. Memory Constraint Percent

Memory Constraint evaluates the anticipated effort to reduce memory usage.
Such economy is usually seen in overlapping/segmentation, special coding,

common memory management, and performance trade-offs.

Memory includes the computer’s main storage for loading and executing
programs and temporary storage of data. Memory includes Random Access

Memory (RAM) Read Only Memory (ROM), core memory and similar program memory

storage/execution devices only. Memory does not include magnetic tapes,
disks, bubble memory used as a storage device, etc.

Indicate the percent of the CSCI that is subject to memory conservation
techniques.

7.1.4.2. CPU Time Constraint Percent

These time constraints are often required to meet overall system

performance requirements. For example, the software may be required to
respond to a user’s request within one second. In such a case, the code
would be tuned to enhance performance in the areas that affect a request
from the user until such a request could be handled in under one second.

Indicate the percent of the CSCI that must have special attention to ensure

adequate time performance (not real time).

7.1.4.3. Real-time Operation Percent

If real time software does not perform within the time limits placed on it

by an outside source (usually hardvare), information will be lost or
changed before the software can process it, or data may not be correctly
output to the device. Examples of this information are: a signal that is
received 1,000 times per second, information that must be received from a
communication netwvork or lost, etc.

Indicate the percentage of the CSCI that must perform its processing
function within absolute time constraints (may be measured in 1,000ths or
10,000ths of a second or even less).

7.1.4.4. Multi-processor Percent

Indicate the percent of the CSCI that must handle multi-processors.

7.1.4.5 Multi-Target Percent

Indicate the percent of the CSCI that is specially written to run on
multiple targets.

SRR R T

= v r.- LY
NN

e
PR

XA

CANS

Ty

-
a

P
0 . »

NN

Yvorg

-

r sy " WY] .
4 L LAl

v r 7 .
A AR

o\

SARPE CUSC NG

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

7.1.5. CSCI Reused Code from Other Projects
7.1.5.1. Total Pre-existing

Enter the size of the pre-existing code completed and tested prior to this
CSCI development. If this CSCI is a totally new development, enter N/A.

[]
DAAKAA; L AAAN L SRAARN

7.1.5.2. Total Deleted

Enter the size deleted from an existing CSCI if this CSCI is reusing code
from another project. Othervise, enter N/A.

7.1.5.3. Total Modified

‘ Enter the total size modified. (Modifications made to the preexisting
o code.) If this CSCI is NOT reusing code from another project, enter N/A.

7.1.5.4. Percent Re-Design Effort

Enter the amount of design effort required to produce the CSCI when
compared vith all new development. If the CSCI is all new, the design
effort is 100X.

When rebuilding or reusing software, the design effort can account for
additional work required to understand existing designs. This may make re-
’ use more costly than it first appears.

£5e a0 £ 3

Reuse of poor, undocumented, or obsolete designs can justify a design
effort rating of greater than 100X.

A v
» & 9

B
a s 2 3

7.1.5.5. Percent Re-Implementation Effort

Enter the implementation effort to code and unit test the CSCI as compared
to all new implementation. Just like the design effort and test effor:,
the implementation effort percentage code is determined by the anticipated
- effort in comparison to a new effort. A complete implementation is 100X.

7.1.5.6. Percent of Re-Test Effort
Enter the test effort required to revalidate the CSCI when compared with
all new development. This includes all test effort after code and unit
test until the CSCI is ready for delivery to system integration with no
. known liens on performance. This test effort does not include CSCI-to-CSCI
- integration or hardvare/softwvare testing.

If the CSCI under estimation is all new, the test effort is 100X.

7.1.5.7. List of Projects which contained the Re-usable Code

List the projects which contained the code which is being reused.

ety

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

FEARAN g - TLTE

7.2. Function Point Data
Enter the following if an automated counting tool is available.
7.2.1. Number of Inputs

Enter the estimated or actual number of unique input types that change
data.

7.2.2. Number of Outputs
Enter the estimated or actual number of external outputs.
7.2.3. Number of Inquiries

Enter the estimated or actual number of input/output combinations where an
input causes or generates an immediate output.

7.2.4. Number of Data Files

Enter the estimated or actual number of logical files that are generated,
used, or maintained by the program.

7.2.5. Number of Interfaces

Enter the estimated or actual number of internal files passed or shared.
7.2.6. Total Number of Function Points

Enter the estimated or actual total number of function points.

7.3. Size/Complexity Data

Enter the requested counts if an automated counting tool is available.
8. Data Base Size (An automated counting tool may be needed)

8.1. Total Data Base Size

Enter the estimated or actual total data base size (in target machine
words).

8.2. Total Unique Data Items

Enter the estimated or actual number of total unique data items. A data
item is a field in a record.

8.3. Total Number of Records

Enter the estimated or actual total number of records (a record is a
heterogeneous set of data items in a named data group).

C-55

R P S S N Rl TR B T T U
RO IR I SRR NN IC A AN PR M AL M AT ALY e

-

]

)

3

l?'_'v, -
[

A

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

8.4. Unique Data Types

Enter the estimated or actual number of unique data types (e.g. integer,
double, floating point,etc.).

9. Special Display Requirements

Special display requirements rate the amount of extra effort required to
interface with the user. Many programs require only simple inputs and
outputs (and no special display requirements).

Special displays are the user’s window into the computer. (This is how the
users see what is happening and view results). It is often a video display
terminal of some sort, although it could be a hard copy printer and
keyboard or another device that allows the user to interact with the
software.

Indicate the special displays implemented in this CSCI.
10. Software Failure History (Errors by Phase)

Enter the number of requirements errors, the number of design errors, the
number of implementation errors, and the total number of errors for each
phase listed. Errors should be unique in every phase (i.e. an error which
is discovered in code and debug should not be in subsequent error counts
even though it may not be fixed yet). An error is a reported anomaly for
which a resolution is a change to the software or specification.

11. Software Change History by Phase

Enter the number of changes which occurred during each completed
development phase, the net increase/decrease in the total system delivered
source lines of code count and the net increase/decrease in the estimated
manpover for the software development effort.

If this information is available only at the system level, then answer
this question on the SOFTWARE DEVELOPMENT PROJECT SUMMARY DATA FORM only.

12. CSCI Development Attributes

12.1. Development Environment

12.1.1. Resource Dedication

Resource dedication is the availability of the virtual machine to the
softvare development project. If the machine is used by other
organizations of the company, then the availability probably decreases.

Even dedicated engineering resources may not be fully available due to
conflicts between teams, hardware developers, etc.

Enter the percentage of time 0 - 100% that the development computer will be
available to the CSCI development team.

.....

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

12.1.2. Resource/Support Location

Resources are things like terminals or manuals. Support includes system
consultants, programmers language support, and development tool support.
Access may be limited by physical distance (terminals in other buildings,
consultants located in other states) or by procedural constraints
(difficult procedures, or by personnel problems - uncooperative people).

Indicate the distance (miles) of the development resources and support from
the development site.

12.1.3. Security Level

Enter the level of security required for this CSCI (e.g. unclassified,
classified, secret, etc.).

12.1.4. Contract Type
Indicate the type of contract the CSCI was developed under.

CPFF Cost Plus Fixed Fee

CPIF = Cost Plus Incentive Fee
FFP = Firm Fixed Price
FPIF = Fixed Price Incentive Fee

12.2. Specific Development Goals

Rate the items listed from 0 - 5 if they will affect the development of the
CSCI. The items are described in greater detail below.

12.2.1. Maximum Maintainability

The CSCI is designed and coded for easy maintainability.
12.2.2. Maximum Reuse of Pre-existing Software

As much code as possible is used from a pre-existing CSCI.
12.2.3. Maximum Reusability of CSCI Level Products

CSCI end-products are coded for re-use.

12.2.4. Maximum Reusability of TLCSC Products

Top-Level CSC Products are designed and coded to be reused.

..........

...........

e I N

.« @ we

BT R X W ¥ R A \-_-,-"

SEA

- "’I' "‘:. -'. .l. ‘l' l.l

4’4'-’:'1’4"'!-

-

e S X

9 .

N
v
0

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA PORM INSTRUCTIONS

12.2.5. Maximum Reusability of LLCSC Products

Lov-Level CSC Products are designed and coded to be reused.

’
12.2.6. Maximum Qutput Clarity
Ra
y The CSCI’'s output (i.e. displays and reports) is developed for maximum
readability.
“~
_: 12.2.7. Maximum Use of Off-the-Shelf Software
N
- The CSCI uses off-the-shelf software to the greatest extent possible.
12.2.8. Language/Tool/Method Evaluation
.ﬂ The goal is to evaluate the use of a specific language tool or method
E rather than just developing software.
S 13. Special Ada Features
"2 Enter the names of any special Ada language features which were/will be
f explicitly avoided during the development of this CSCI.
<)
& If there are special Ada features used in the CSCI, indicate if there is a
N development organization internal standard regarding the use of the special
features.
14. Special Problems or Comments
List any special problems or comments which are important to the
development of this CSCI, but have not been covered in this document.
o
'n’
'
4
o
.
$
o
e
A
A
4
(4
¥
C-58
{
{
-Z"--’}Z".--';-."-'.','~l’I'_;i"-l::-l;;-."’-lf_{" ~7 -;:_\;\;""- -. -.'-."."--’u" i‘-;" \"'{-Z'-C"{"\"-l'-:-:{ TN T e T e Gl e T e

L WA VU R 0ie ke tat 2o VW U 4 . > |

- COMPUTER SOFTVARE SIZE SUMMARY DATA FORM INSTRUCTIONS
(
>
A 1. +CIL Name and Date
Al Enter the name of the CSCI and the date the form is being completed.
:‘ 2. Development Contractor/Organization
“f Identify the company or organization which is actually performing the
softwvare design and development of this CSCI.
~ 3. Project Name
N
:‘ Enrer the name of the project which contains this CSCI.
~ 4. CSCL Size Description
~ 4.1. Size Format
", Indicate the size format which most accurately describes the method used to
~ deteimine the size of this CSCI. SLOC is Source Lines Of Code. Note that
~ this size measure is only used for the Total Size, Comments and Doc.
3 (sometimes), Size Reused, Size to be Reusable, Pre-existing Code Size, and
N Mods to Pre-existing.
: w.2. CSC Size
" List each CSC and its size values (list CSCI size if CSC sizes are not
available). If a size value does not apply to the CSC enter "N.A." If the
- size values are available for more than one size format, fill out a
. separate form for each size format available.
s
i The number of words is measured using target computer words.
) The pre-existing code size is the size of a pre-existing CSC that was
5 rebuilt or modified.
f Mods to pre-existing is the number of lines added, deleted, or modified
- in the pre-existing CSC.
Size reused is the size of a CSC reused without modification.
f Size to be reusable is the amount of the CSC that was designed to be
* reusable code.
: Language is asked for because the CSC may not be in Ada. The code
- could be reused from a project using another language, or this CSCI
. could be designed in Ada and implemented in another language.
’
‘ C-959
’l
\
\I e et ‘-'. CRd ““a '--\,’. f&"- u e
N A N e A A

[l NN

A A Al €

RESOURCE EXPENDITURR DATA FORM INSTRUCTIONS

This form is designed to collect time-phased manpower data for the software
development project at the lowest level of detail available. Attach a copy
of the cost/vork breakdown structure used to collect manpower data for
softwvare activities on this contract/development project.

1. Project Name
Enter the project name.
2. CSCI or Subsystem Name

It the resource expenditure data is for an identified CSCI, state the name
of the CSCI here and report expenditure data in accord with the WBS
elements identified in the row, "CSCI WBS." Six WBS elements are shown in
this row whicn breaks down the development labor into categcries of design,
code and debug, test documentation, test, program documentation, and
verification and validation. If the CSCI resource data are not available
at this level, report the totals for these activities and note on the sheet
which if any of these activities may not be included in the resource
expenditure data.

If the resource expenditure data is for system level programmatic
activities necessary to the integration of two or more CSCIs within one
hardvare subsystem, state the subsystem name and report resource
expenditure data according to the WBS elements identified in the row titles
"System WBS."

The software engineering may include, at this level, elements of program
management, configuration control. systems analysis, and CSCI integration
and test as part of the softvare subsystem development. Thus, the second
rov of WBS elements allows for this resource expenditure data to be
reported apart from the efforts associated with developing each CSCI.

3. Latest Month of Actuals

Enter the latest month after contract awvard or project start for which
actual manpower data is available. This number should reflect the months
after the date for contract award entered in Item 4.1 for the Contract
Avard milestone on the Software Development Project Summary Data Form.

4. Units of Manpowver

Enter the units of measure used for the manpover figures, that is, man-
hours, man-days, man-months or man-years. Indicate the number of hours
that the unit is based on, if you are not entering man-hours.

In each of the subsequent rovs enter the manpowver expended during the month
after Contract Awvard indicated in the left-hand column. Space is provided
for up to five years of data. For ongoing projects enter the latest
estimate of resource requirements for those months for which actual data is
not available.

) g ‘e K + s - : e av RN ST R MR 0.0y Sop Hag 0.0°9 .4

GLOSSARY
e
2
Y
o
: Ada Tasking
2
An Ada construct in wvhich a program unit may operate in parallel with
;. the main program.
-
- Bottom-Up
.
- A term usually used to describe design or testing strategies in which
: the lovest level components are designed or tested first, then the
- next level components, and so on, until the highest level component is
v designed or tested. For dynamic bottom-up testing, drivers for the
- individual or set of low level components must be built in order to
- provide their input and observe their output.
2 Central Processing Unit (CPU)
;f The CPU is the computer’s main processor, as opposed to other
o potential co-resident special purpose (e.g., math handling, graphics
- handling, etc.) processors.
- Code and Unit Test (CUT) Milestone
- The milestone vhen the softwvare coding and unit testing is completed,
- and the softwvare is ready for integration.
-
N Configuration Management
s
Includes task configuration identification, change control, configu-
> ration status accounting, and configuration auditing to ensure proper
o configuration control.
g
e Contract Awvard
The point when the development is actually funded or the go-ahead for
.. development is received. Some requirements work may have been done
- prior to this time, but not necessarily.
? Correctness
. Correctness is a software quality factor which indicates the degree to
- which softwvare satisfies its requirements.
ff Critical Design Review (CDR)
:I A review conducted for each configuration item when the detail design
- is essentially complete to determine if the detail design satisfies
- the requirements established in the specification and to establish the
: exact interface relationships with other parts of the system.
-~
R

- ~

A P P R R I e L T LI L T - P T
o ~ " *' ""*-'ﬂ-‘-\"." A v '-"-'\J“f\' a . o Tt

n S L Al e Atal ARa dNn ATe B0 Pa_jite A, Mg A0 M. AR, alaNataAAs R I AR Bia Mg A6

PSP L,

Cross-Assembler

A computer program that accepts symbolic instruction mnemonics for a
I selected target computer and generates target computer machine code
wvhile hosted on another computer. A cross-assembler thus allows code
written on one computer to be assembled on another. A symbolic

- language translator that operates on one type of computer to provide
machine code for another type of computer.

X CSCI (Computer Software Configuration Item)

An aggregation of computer software which satisfies an end-use
function and is designated for configuration management.

- Data Base

Cd

: In its broadest sense, a data base is the complete collection of

? information (machine-readable data--both external data files and

L internal, hard-coded data items--and written documentation) associated

wvith a softwvare program. Generally, data base refers to a specific
set of machine-readable data files.

- Derived Type
i An Ada object type whose operations and values are taken from an

existing object type.
i Design/Code, Walkthroughs/Inspections
. A step-by-step, detailed examination of design/source code by a small

group of qualified personnel.

Development Staff

N Software design and software programming personnel.
: Development Test and Evaluation Milestone

The milestone when software has been completely integrated with other
. softvare and hardwvare, and has passed system tests.
X Development Test and Evaluation (DT&E)

Test and evaluation that focuses on the technological and engineering

aspects of the system or equipment items.
ol U
" Efficiency ‘
g Efficiency is a software quality factor indicating how productively
. the softwvare uses its computer resources.
v
<

C-62 !

e S G L ol 0 L e S, S e i o

Formal Qualification Test (FQT)

A formal test conducted in accordance with approved test plans,
descriptions, and procedures after a CPCI has been integrated to
validate that each function of the CPCI satisfies the specified
softwvare requirements and applicable interface requirements.

Formal Test

A test which is conducted in accordance with test procedures approved
by the procuring activity, is witnessed by an authorized represent-
ative, and is documented in a test report for procuring agency review.

Function Points

Functions points is a measurement and calculation technique used for
estimating productivity. The technique calls for classifying and
counting five types of functions: external inputs, external outputs,
logical internal files, external interface files, and external inquiry
types.

Functional Configuration Audit (FCA)

The formal examination of functional characteristics test data for
a configuration item to verify that the item has achieved the per-
formance specified in its functional or allocated configuration
identification.

Functional Specifications

A specification of a component as a set of functions defining the
output for any input. The specification emphasizes what the program
is to do, rather than how to do it. However, an algorithmic specifi-
cation can be considered functional if it is not used to dictate the
algorithm to be used. Describe a system in terms of its principle
functions and their interrelationships; i.e., the functional
relationships of the parts.

Generics

Generics are Ada subprograms that can process parameters of more than
one type. The classes of parameters that are acceptable to the
subprogram are specified in a generic clause. Before using a generic
subprogram, the types that it is to process are specified during
generic instantiation.

HIPO (Hierarchy Plus Input-Process-Output)

A graphical technique that defines each component by its transform-
ation on its input data sets to its output data sets. This part

C-63

Ko .l * » . - - - - - .

- " - -
LS Sl SR WA S WA, W, M &

e s ¢ v ¢

v Ty ¥

.y

e U A AR OO R,) G 88 Aaq S0 0 8800 g tad 8 Statatal et el sat Pay

< .
L e 4 n, na P EE R G e o orte oy hperarchy oo
o O Y - T O O K Tre hierar-hy 7na:
R e R T T = ST S SRR E SALAIE N AL PG Uk t R
13.:s1 n 5L ten troas ¢t edch tunct:ion o1 subfune
@1 snPul L3 LoroLhart, oughly, similar ro the bicck diagram
RS S St ows fthe dnputs ant ourpurs and the processes joising
Tt e sl . 1> lngnt Prouress Glotput 1s a zraphic design e
: 1l 0 Aiag: am. descrice tun rtians in rerms ot che input t-
: €~ &y show 3 5yStemn, subsystem, or preogram fonctionally
PL.E. 0 tre tun tilons chat it performs), answering the goeestion e
es .t {0 " Since rnese diagrams are visual. they are easier rtn

Lok .+d Utan mostc Jorweentacion which 1s narrati.e. Altnough
*loa0 0t are another gea;ric design technique, they show organi-
e2tl anad D gic 10 ¢ontrast to function.

¢.:w -:: lotor

AoCONL.L =t pLOgram iSc? tn Simulate the execution characterist..s of
target (o7 uter usiag a sequence ot instructions of a host compurter.
fhe in-cre crion simelator provides bit for-bit fideliry with the
resuiry fhat woold be produced by the target computer following tne
“-r1e ve.atlons ancg i.air1al conditions.

P o6 xt with the tunition-points technique, an inquiry is a unigue

Gg ‘. t comtination, where an inpul causes and generates an
fraes Lt pul, o~ an external ingulirv rype.
Al
ey CE et iaie Lt tadtar describing the level of contr
SU . rertzed 1C.eSs to operations and data.
Ts ¢

¢i o the tunectiorn point rechnique, an (exrernal) 1ar.

- © e pexse or shireg hetleen applications.

cl)

e et ‘ a Lo liudre 1ty factor which indicates now .
Tl Len Sl T bove Wit cystems

s ol

t o e ey, ‘wrati. e enhancement -~=ans
e cn o st w1t v c1ttle detarl at tirst, a0,

v re tera, . S th oeacr wWiloiTeration.

CLS NS S

Maintainability
Maintainability is a software quality factor which indicates the
degree of effort it takes to locate and fix an error. High maintain-
ability means a lov degree of effort.

Monitor

A monitor determines which of two or more processes competing for
control, in order to execute has priority. It allows that wvhich has
priority to take control and execute and places the other process(s)
on a queue to await their turn to take control and execute.

Operational
The status given a software package once it has completed contractor
testing and it is turned over to the eventual user for use in the
applications environment.
Operational Evaluation
The analysis of a system operating in its real-life environment.
Operational Test and Evaluation (OT&E)
Testing designed to give results related to the service environment in
wvhich the systems will be operating. It is accomplished by service
operational and support personnel of the type and qualification of
those expected to use and maintain the equipment. OT&E relates not
only to technical suitability, but also operational effectiveness ard
suitability, including maintainability, reliability, training, and
logistics.
Operational Testing
Performing tests on software in its normal operating environment.
Overloading Operator
Overloading an Ada operato:r means that it has been given more than
one meaning or function. The particular meaning of the overloaded

operator depends upon the type it receives at a given time.

Peak Staff

The maximum number of project and development staff during f+1l1 scale
development.

Physical Configuration Audit (PCA)

The formal examination of the "as coded” ronfiguratinon of a CPCI
against its technical documentation in order to establish the initial
product configuration identification.

e

a Po

L A

S A N

yr.s Saat At - S S N SE ST LAl fab Sl S DA S AL, S Sl S §

Portability

Portability 1s a softwvare quality factor vhich reflects the maximum
effort required to transfer an implemented system frcm one hardvare or
software system environment to another.

Preliminary Design Review (PDR)

A reviev prior to the start of the detailed design process to evaluate
progress and technical adequacy of the selected design approach, to
determine the design compatibility with the performance requirements
of the CPCI development specification, and to establish the existence
and compatibility of the interfaces between the configuration item and
other elements of the system.

Preliminary Qualification Test (PQT)
A test conducted during the integration of a CPCI to evaluate the
performance of those CPCI functions which are critical, as determined

by time-critical or performance-critical requirements.

Procedural Specifications

A specification of a component in some algorithmic manner (e.g., using

PDL or a flowchart). The specification says how the program is to
work.

Program Design Language (PDL)
A design tool used to facilitate the translation of functional
specifications into computer instructions. Intended to be comparable
to the blueprint in hardware, programming design languages strive to
communicate the concept of the software design in all necessary
detail, using a formal or struetured version of English.

Program Librarian
A program librarian is someone who is responsible for controlling all
of the softwvare and technical documentation pieces of a project. This
role is usually associated with configuration management.

Program Management

Includes direct labor software management. It does not include
hardware management highest level program management, etc.

Program Support Library

A software system which prnvides fonls to nrganize, implement and
control softwvare development.

.I',‘--‘.n o ‘.-'-"-'p -.- T "»'n"—‘»‘
L A R S SR S R SR Y

Proof of Correctness

Proof of correctness is a software testing technique in which the
program is treated like a theorem. Usually the proof consists of
symbolically evaluating all of the expressions from an input statement
to an appropriate output statement, assuming a given input value.
Alternatively, the proof can start from an output statement and
evaluate the expressions backwards to an appropriate input statement.
The purpose is to prove that the program both terminates and produces
the expected output for a specific input domain.

Quality Assurance

Includes the quality engineering functions (ensuring that quality is
built into the product and developing appropriate standards), and
quality control inspection and audits.

Rapid Prototyping

Softwvare rapid prototyping involves quickly building a system or model
of the system, usually for the purpose of demonstrating feasibility,
clarifying stated requirements, or trying out design concepts. The
prototype may not be the basis of the eventual system (i.e., a throv-
avay, once the purpose is served) or it may be a skeleton of the
eventual system.

Record

In the context of Ada, a record object type is made up of components
that usually have different named types or subtypes.

Reliability

Reliability is a software quality factor which indicates how
consistently an implemented system performs its intended function
for its specified input domain.

Requirements

A system specification written by the user to define a system to a
developer. (A statement of what the user (purchaser) expects the
system to include among its capabilities.)

Requirements Analysis

Analysis performed to assure that the developer’'s software
requirements are completely and correctly defined. As part of this
activity, analysts check each requirement for consistency with other
requirements and trace software requirements to their source.

L AR

S

'y Yy 2 .

AN LS LT

A NS

(X XE AN

NSO v

Fel P

Ly

e WA A A)

Requirements Specification

Translation of an operational (or application) requirement into a
statement of the functions to be performed.

Requirements Specification Language

A language used to specify a software system which is sufficiently
formal in the mathematical sense, that conclusions concerning
consistency and completeness may be drawn from the system’s
specifications expressed in such languages.

Reusability

SLOC

Reusability is a software quality factor which indicates how easily
a software unit or system can be used in another application.

(Source Lines of Code)

The SLOC represents the number of "card-image" lines of compilable
source code. It does not include comments; they are not compiled.

It does include data declarations. If a single programming statement
takes more than one line to express, then each line is counted
separately. However, if more than one programming statement is
entered on the same line, each statement {s counted as a line (since
a compiler treats the statements separately).

Software Design

This includes the definition of the softwvare architecture to implement
the software requirements, the preparation of architectural design
specifications, design reviews, the layout of physical data struc-
tures, interfaces, and additional design details to implement the
requirements.

Softwvare Programming

This includes the actual coding, unit testing, maintaining appropriate
unit documentation, and test driver development for the individual
softvare modules/units.

Software Specification Review (SSR)

A review to demonstrate to the contracting agency the adequacy ot the
Operational Concepts Document, Softwvare Requirements Specification,
and, if applicable, Interface Requirements Specification(s). Specifi-
details regarding the SSR process are contained in MIL-STD-1521.

Softvare Test

Includes preparing test plans and procedures. 1.nning tests, and
preparing test reports. This inclides softvare telated test only.

. %

'..)J’d

h]
s

[}
E

RAR .",‘,.\,-_-

Al

L,/

Specification-Driven Testing

Input test data derived for the purpose of testing each specified
requirement or design element is known as specification-driven
testing.

Staffing Rate
The rate at which people can be added to the project per year.

Static Analysis

The analysis of a program without executing the program. Specific
methodologies include desk checking, peer code review, and structural
analysis.

Structure-Driven Testing

Using input test data derived for the purpose of testing each logical
path in a program.

Structured Design

Design technique that involves hierarchical partitioning of a modular
structure in a top-down fashion, with emphasis on reduced coupling and
strong cohesion.

Structured Code

Structured code usually indicates that only well-behaved control
constructs are used. This means that logic is forward floving and
each control block has a single entry (and possibly a single exit).
In Ada, all control constructs, except the goto statement, represent
structured code. The use of the exit statement, hovever, does
introduce a multiple exit construct for the loop control block.

Structured Programming

The activity of programming with a limited set of constructs. The key
constructs in structured programming are: (A) each program is alloved
only one entry and one exit. (B) only three basic control structures
are sufficient: do-while, if-then-else, else, and sequence. (C)
other sequences are sometimes allowed, the most popular ones being
do-until and case. (D) The restricted constructs are often augmented
vith the folloving practices: * hierarchical and modular block
structures * limits on the size of modules * indentations and
formatting a system design, implementation and computer programming
technique encompassing the following concepts: (1) Top-dovn design in
vhich overall program logic is designated first, each major component
before any of its subcomponents, etc. (2) Chief programmer team
managerial approach to program production incorporating as a nucleus a
chief programmer, a back-up programmer, programming secretary and

defined relationships among any additional specialists. (3) Top-down
programming in which overall program logic is coded and tested before

any of its subcomponents, etc. (4) Programming using only the three

logic structures of a simple sequence of two or more operations; a -
conditional branch to one, or more operations and a return (if A, then

B, else C); and a repetition of an operation vhile a condition is true
(do-while). (5) Programming with limited or no "Go To" logic. (6) .
Picture-on-a-page technique in which the overall progrem logic is

represented on the first page, each major component is represented on

a subsequent page, each subcomponent on a still later page, etc.

Structured Requirements Analysis

An analysis technique that involved hierarchical partitioning of the
requirements in a top-down fashion, with emphasis on functionality.

System Design Review (SDR)

A reviev conducted vhen the definition effort has proceeded to

the point where systems requirements and design approach are more
precisely defined. The review ensures that there is a technical
understanding betveen the contractor and the procuring agency on the
system segments defined in the system specifications and the con-
figuration items defined in the configuration item performance
specifications.

System Requirements Review (SRR)
A reviev ~ondiucted vhen a significant portion of the system functional

requiremen’s have been established to determine the adequacy of the
rontrartar s efforts in defining system requirements.

y_ 2 JF 2

Terminal Response Time

Terminal response time is the elapsed wvallclock time from the moment
the return or enter key is hit until a response is shown on the
terminal’'s screen.

T R L A

Testability

Testability is a softvare quality factor which indicates the maximum
effort required to ensure that the system performs its intended
functions.

Top-Down

Top-down is the reverse design or testing strategy of bottom-up. The
top-down approach calls for designing or testing the highest level
components first, and working downward tovard the lowvest level compo-
nents. In top-down testing, stubs (i.e., nearly vacuous components
that merely model the actual components) must be built in order to
simulate the values that the lower level components would return, if
invoked.

o s B 5 .

Cc-70

SR

e AT A R e I N A T
. . o’ "~

"

xR ey

2

<

4
¢
)
4
'y
K,
,
- ”
s
D™

) U} *, VIR U AR Vap dag Sop ¢ B tatotatatel b cataletzh,tal taliata "2ty hat gl

Turnaround Time

Turnaround time is the elapsed wallclock time involved in a particular
activity. If compilation turnaround time is of interest, it would be
the elapsed time required from the moment the source code is made
available to the compiler until an indication is given that compi-
lation is complete.

Usability

Usability is a software quality factor which indicates the level of
human engineering requirements for the system. These requirements
include the maximum time and effort required to learn the human
interface, prepare input, and interpret output of the system.

Validation

The act of confirming that the design specifications and contractual
commitments have been met and that operational capabilities of the
ship/systems have been demonstrated to be satisfactory.

Virtual Machines

The complex of software and hardvare that the software being developed
calls upon to accomplish its tasks.

Walkthrough

\\‘-' N

et e e e L T A L e e e e
S aCeaeatheat Bt ! e

A wvalkthrough is a technique of desk-checking a completed item. It
usually refers to the manual analysis of source code as a review
check. It is often undertaken by an incependent analyst, not the
author of the code.

Cc-71

'v-- .

. - - " v ey vV ¢ ' Y U " AR T i o RN ,.--n.m.m.. ‘\4\4\‘
P AL S A CPIRANSS,P P) _\-\-\l -\-.- . A CEMERL AN .-..-.4~1-.-......\..\-: Tl ﬁ..........l.nﬂ ELm e g Kbl .p.-\. .Mﬁ s

)

APPENDIX D
DATA COLLECTION PLAN
D-1

t .
s

r

INTRODUCTION

This plan defines both the general approach and specific require-
ments for the Ada software data collection effort. This effort will
provide more knowvledge about the actual costs, schedules, and development
environments of Ada-related projects and expand the ESD/ACC software data

base.

Data will be collected using the data collection forms created
during this research study (Appendix C of the Task One ESD Ada Software
Cost Study). These forms are an enhancement of the software data collec-
tion forms currently being used by ESD. They are designed to collect the
data requested by the original forms, and additional data that are felt to
be of value in future modelings of the costs and schedules of Ada software

projects.

The forms have also been somewhat reordered to group data that apply
to a specific phase or topic. The reordering makes the individual forms
more flexible in their ability to be tailored to a particular software

development.

The data to be gathered will help calibrate existing software cost
models and provide guidance for potential new model development. Addi-

tionally, the data will provide insights into Ada project management.

Actual data collection will be performed during SPO contacts, on-
site interviews, document reviews, and evaluation. The on-site data

collection will ensure that data are collected consistently and completely,

vithin the definitions and scope intended. The data will be collected
according to the procedures outlined in CR-0136, "Procedures for Future
Data Collection and Update,” a document produced under Tecolote’s ESD

Software Database Expansion task.

WA I I
b TS L ST -~

. The Tecolote data c(ollection will be coordinated with the two SBIR
contractors that will be collecting similar data in order to develop an Ada
cost model. ACC will be the focal point of the coordination. The purpose

of the coordination will be to ensure that we all operate as a team and

f: provide the government with the best possible return for its research
dollar.

- Candidate projects that were identified during the research study

N are identified in this plan.

",

.

- L va . . - N
- S0 g

'.(““"‘."."'“"' R AL e '-“"-{'{ R A A A L L TR T
alalatnras 2 anallaa sty ot o ol bl Al eidnideidacdodnodiado.dindodudo b doide

SCOPE OF THE DATA COLLECTION EFFORT

Candidate software development projects must be Ada-related, either by
using Ada as the implementation language, using Ada tools and methods, or
as prior non-Ada implementations of current Ada developments (such as the
previous implementation of a simulator that is currently under reimplemen-

tation in Ada).

Both large and small Ada-related programs are included as candi-
dates, although more large projects are preferable. Actual developments,
vith typical personnel and functional deliverables, are also highly desired
candidate project traits. Data from several experimental projects (highly
motivated teams of experts who are constantly being measured) will be
collected. This data will be specially identified to ensure they are used

vith caution in cost model calibration.

4 02 5 48

‘\ﬁ\\\\\“'

v
»

AERA I

EA RS Y

LT)

NS

L g

N s
LS -

7,7

ARMRRRA 4

L A

-

e et ‘.l._':\-

R A

P

DATA COLLECTION APPROACH

Most data collection will be performed on-site, at the developer
facilities. Additionally, some data will be collected from SPQOs (or other
appropriate organizations for non-Air Force projects), both to save time
and to determine how it correlates with detailed project data. Experienced
softwvare professionals/cost analysts will perform the on-site data collec-
tion. This will ensure experimental project shortcuts are identified and

reduce the potential of contractors providing unreasonable data.
Data collection will be performed as follows:

Arrange visits with program offices.

Prepare program overviews before on-site visits.

°

)

e Collect initial data.

e Validate initial findings.
)

Clean up initial data.

Additionally, on incomplete projects where data have been collected,
arrangements for final data to be collected upon project completion will be
made. This is in accordance with the procedure for the Software Data Base
Expansion.

These steps are detailed in the following sections.

3.1 ARRANGE VISITS VITH PROGRAM OFFICES

SPO contacts will be made as a matter of courtesy, to help ensure
contractor cooperation during data collection and as a primary source of
project information. First we will contact the SPOs via letter, intro-
ducing ourselves, explaining the project, and requesting cooperation in the

data collection activity. The letter will be written and signed by the

appropriate ACC representative. This will be followed with a telephone
contact. Over the telephone, we will reintroduce ourselves, explain the
D-6

LA A AV -
R Ry
L g £ g

LR 2 N I MR A R
RERA NN . .
e e S

T T T N T

TN YR TN YR "'("

data collection goals, and clarify the information contractors should

assemble before our on-site visits.

The usefulness of the data collection to the Air Force and the SPO’s

mission will be emphasized. VWe will refer SPO personnel to our Air Force

contact if necessary to resolve any concerns. Additionally, we will inform
the SPOs of our non-disclosure agreement with ACC and communicate our will-

ingness to sign additional non-disclosure agreements.

3.2 PREPARE PROGRAM OVERVIEWS

These program overviews will ensure the scope and goals of identi-
fied projects are understood before on-site visits. Project case files
will be created to ensure data is well organized and that researchers have

project familiarity before the on-site contractor visits.

3.3 COMPILE PROJECT CASE STUDY FILES

A case study file will be prepared for each candidate program. These
files will be updated as additional information becomes available through-
out the data collection process. The following information will be
included as available:

Program name and major hardware elements
Program managers

Program mission/Application type

Development schedule

Related programs or projects

Program goals (production, experimental, etc.)
Contractor’s Ada experience level

Contractor and subcontractor names

Ada environment summary (such as Rational or VAX)
CSCI names, numbers, and sizes

RDT&E funding profiles

History of program modifications

Project-level data collection forms

Other pertinent data

t. LI] l'- < f DN Al o e « -" " M " -
A A A SN SN N o e N A T e "\-.f.{& S

ILJL L.RAA‘.AJ

-

PPEENES

S

+

.,

R S T e el e
T T T T S Y S e

3.3.1 PROGRAM OVERVIEW INFORMATION SOURCES

The sources that will be accessed to develop the program overviews

are:

e Program management directives (ESD or others when applicable

to the project).
e RDT&E summaries of budgetary submits.

e ESD or other applicable cost library documents dealing with

recent cost estimates.

» Telephone contacts with knowledgeable ESD, MITRE, and other

appropriate personnel.

o Telephone <conversations with SPOs or other Government

personnel.

e Computer Resource Integrated Support Plans (CRISPS) where

possible to provide major software information.

3.3.2 VISITS TO SPO TO COLLECT PROJECT FILE DATA

If visits to SPO are required to obtain the requested data, we will
attempt to arrange them to minimize the number of trips. These visits will
be made if SPOs cannot provide necessary project file data via mail, or if

wve feel a visit will allay SPO misgivings about this effort.

3.4 ARRANGE CONTRACTOR VISITS

Each specific contractor will be contacted after the appropriate SPO
has approved the data collection. During the contractor contact, we will
set appointment dates. Appointments will be coordinated so we collect data
on projects that are farther along the development cycle first. This will
give other projects more time to develop before we do data collection. Ve
will plan one to two weeks on-site per project, depending on the project
size, development cycle phase, contractor cooperation, and likelihood of

collecting meaningful data.

D-8

AR RIS Y

~
e
>
S

M S GRSk Gl Rl Mg

Second visits may be recommended for projects rhat are useful data
sources where more actual (rather than estimated) data or results of recent

changes are deemed valuable during the first visits.

3.4.1 CONTRACTOR PROPRIETARY DATA SECURITY

Non-disclosure agreements can be executed wvith specific contractors
if needed. Some entries in the form may be sanitized to ensure contractor
confidentiality. The contractor will be asked to indicate which data are
proprietary. The Air Force will receive a master data set with original

data.

3.4.2 DISTRIBUTION OF SANITIZED DATA

Ve recommend ESD/ACC offer participating contractors sanitized ver-
sions of the data collected from all projects during this task. We believe
this will provide an extra incentive for cooperation. If ACC agrees, we
will include this offer in our initial contacts. We will assure contrac-

tors that only sanitized data will be distributed.

3.5 COLLECT DATA AT CONTRACTOR SITES

3.5.1 LOCATE DATA SOURCES ON-SITE

Ve will identify the following personnel and data sources:

® Program managers to provide the project level information,
goals, personnel attribute information, and to coordinate with

other project personnel.

e Software CSCI-level managers to provide more detailed size,

difficulty, personnel, and environment data.

e Software engineers involved with each CSCI who can provide us
with the detailed data and assist in our independent document

evaluation.

e Quality assurance personnel, testers, and others who have

performed independent project analysis and reviews.

’ T e e e
.s-f. o o “~ \‘(s ,vr_.. \I\J' o

\1.'-"_.'~' - _

balh Sal Bok Aol Al Sad Sl Rall 4nd 4 - w A ol Al o8 Aok’ Rl v
BRI AR A A St A il e e AR Tall L Yol bl

-
-

NLSXwRT

L

e Actual plans. software specifications, manuals, listings, unit

development folders, and other information for review.

i

3.5.2 INTERVIEW APPROPRIATE PERSONNEL AND REVIEW DOCUMENTATION

3.5.2.1 Program Manager Interviews

Our first contractor site interview will be the program manager for
one to two hours, filling in top-level project data, verifying any unclear
information within our project file and gaining commitment for arranging
meetings with CSCI level managers. 1If the project 1Is too large to allow
data collection on each CSCI, we will identify the most appropriate CSCIs

for data collection.

3.5.2.2 CSCI Level Manager Intervievs

Appropriate CSCl1 level managers will be intervieved next. Each
initial interview will take about two hours. During these interviews, we
will acquire more detailed size, difficulty, personnel, and other data.
Additionally, we will coordinate our interviews with softvare engineering
and technical personnel primarily through these CSCI level managers. We
vill interview CSCI level managers again to fill in any missing data or

resolve inconsistencies in data obtained from technical personnel.

3.5.2.3 Technical Personnel Interviews

During these technical revievs, we will collect detailed CSCI level
data. Additionally, we will wvalidate any questionable data received from
other interviews. The combination of software engineers actually doing the
vork, testers, quality assurance, and other personnel should provide us

with a well-rounded, accurate picture of development.

1.5.2.4 Review CSCI Documentation

During our documentation reviews, we will validate information
received from project personnel. Additionally, we will review documents

for additional insights. For example:

PRI I

R
—eetedmbindads i{‘;.\i.‘;;jl';."..'-j

8t a b e B%a 4' 2", Yy

o The Software Development Plan review should provide signifi-

cant data.

e Design specification reviews should show the use of design
level tools and methods.

o Code reviews of chosen packages should provide indications of

Ada conventions used.

e Unit development files may provide a wide variety of

information.

e Test plans, procedures and reports (and software problem and
change reports) may provide information regarding the ease of

test and number of errors.

3.5.3 RECORD DATA IN DATA COLLECTION FORMS

Most data will be entered into the collection forms during the
interviews and reviews. Some details may be filled out in between inter-

views to ensure respondent’s time is optimized.
After each interview, the major data sources will be noted.
Post-interview reviews by data collection personnel may highlight
areas vhere more data should be captured or where clarification of incon-
sistencies is required. If so, we will attempt to clarify the information

vhile on-3ite.

31.5.3.1 Estimated Data Collection Versus Actual

Since project data will be collected at differing points within the
development cycle, some data may be estimated, rather than actual. In
those cases where a range of data is appropriate, we will collect the mini-
mum, most likely, and maximum estimates of these data. The minimum and
maximum case estimates will be verified with both management and technical
personnel when appropriate. All estimated data collected will include

information identifying the source.

A T T T
T e e e e N AT T
N 0 ¥ ad =

TN

_ A

3.5.3.2 Data Sanitizing

If desired, data will be sanitized after the on-site v:s51°
completed. Sanitation will remove information allowing specific prorec:
identification. In ~rder to allay contractor concerns about adeguare
sanitization, a completed copy of the data collection forms will be pro-
vided to the contractor. The contractor will then indicate which data are

proprietary.

3.6 VALIDATE FINDINGS VIA INDEPENDENT PROJECT OR SPO INTERVIEWS

After the data collection forms are completely filled out, we will
attempt to verify the accuracy of high-level data independent of the con-
tractor. Validation will concentrate on areas that appear to be outside of
norms, overall project goals, and the specific Ada cost drivers issues and

impacts.

3.7 CLEAN UP DATA AND TEXT DEFINITION

During this step, staff will ensure forms are neatly filled in with
out blanks, that the cross-referencing between forms is appropriate. and
that any textual descriptions within the forms are complete, cohesive <en
tences. The forms will be suitable for a clerk to enter the data in*< an

t

automated data base. If wve feel it will add clarity., we «will: (1) incl.de

a second copy of the form with relevant text or qualifying informarion:

(2) add a separate sheet of caveats at the end of the form.

alid 3ol

at Bl e A A A A e AN e SN ArthAe“ate A AL Aeh ol S bt Sk bl g Bl b 4" b MR A" 00 0 40" a2 6 a8 ATLE Lt

Do «

Qe

CANDIDATE ADA PROGRAMS

The following lists candidate programs for data collection. To

-.\\l.v!;\s

date, prnject sources have been reluctant to provide much information with-
out a formal introduction from the Air Force. The usual reason given was
. the high wvisibility of the early Ada projects and the desire to minimize
*he number of requests for information. There is a concern that the number
nf potential data requests can interfere with the Ada projects’ progress.
- Thus, when ACC approves of this data collection plan and provides a letter
nf intrnduction, the state of the various projects can be assessed and a

priority list can be generated.

There are many non-Air Force projects on the project list, and they
should be considered for data collection to ensure we obtain as much infor-
marion on Ada costs as possible. Hence, ACC should explore the possibility
nf having the AJPO support this effort with their own cover letter. Addi-
*ional support could come from RADC, SSCAG, and other high-level organiza-

Y

Y

tions. The more official backing the project has, the easier it will be to

ga:n the r~ooperatinn of government managers and private contractors.

XA NS

Once the data collection task begins, the SPOs’ and contractors’
villingness and enthusiasm for data collection will be factored into the
‘. ~andidate list. Data relating to previous implementations of current Ada

ifevelopments will be given priority to contrast vith the new Ada systems.

A few non-Ada projects are in the list. These are the original

tinctinns that are being reimplemented in Ada at SIM SPO.

LS

Ve are s'ill working to 1dentify additional projects. As more

o

intormatinn bhe-omes available, 1t «ill he provided.

. .
LINE N W VU Ny R N N e

° l" -.' n.‘ . .. - - .~
¥ L, DA -
WG AL W, Y R

S et b hab ad Latat el hh pd RS g8 i b i e y v St tarutenalyt e dust Sl i i pfie A b P hegth gt) el 0 hisugihuish casasdbesadb gt)

PR e 4

4.1 ASD/SIMSPO REBUILD - BOEING

, Summary: Rebuild of existing simulator for Ada
N data collection purposes.

~ Program Manager: Bill Lloyd

'ny Telephone Number: (513) 255-7177

Project Phase: Past PDR

AN

4.2 ASD/SIMSPO REBUILD - PERTEC

Summary: Rebuild of existing simulator for Ada data collection
purposes.

Program Manager: Bill LLoyd

" h T R

Telephone Number: (513) 255-7177

Project Phase: Past PDR

é 4.3 NSA MINSTREL - GTE ROCKVILLE

Summary: NSA project developed by GTE. Originally targeted for
language development. Language was changed to Ada
project after contract award. Ada training is
currently underway.

Telephone Number: (301) 294-8603 777

4.4 ASD ECSPO 1750 COMPILER

Summary: Compiler with real time, size and performance
constraints under development. Project is in trouble.
SPO personnel asked that we not collect data.

DTN

Program Manager: Robert Earnest

Telephone Number: (513) 255-5945

4.5 ROME AIR ADA-INTEGRATED ENVIRONMENT

4.6 MILSTAR GROUND TERMINAL - LOCKHEED

- Program Manager: Colonel Lindberg

D-14

© g2 e ha’ B2 i’ CPr LTy - S et Ga® et Gat $u¥ (ut gyt W W LR J U ey % 5.8 Sofl ot a8 J
. - "~ W 30 B : oS S Sa" s ! o i

N
‘nd

"

0 ¢

(X a

(l

[V

-;I 4.7 NSA - GTE MOUNTAIN VIEV

. Summary: 10,000 lines developed to NSAM standards. Recently
e completed under budget.

‘\; Program Manager: Margaret Meseimans (GTE Mountain View)

5I

:‘_: Project Phase: Complete

N 4.8 SIG ADA EXPERIMENT

A Program Manager: Tony Alben (TRW Contact)

3 Telephone Number: (213) 535-1624
.:: Project Phase: Completed
-
N 4.9 WVORKSTATIONS - INTELLIMAC ROCKVILLE

Summary: Developed Ada environment workstations.

<.
—Ef Program Manager: Dave Dikel or Mr. Richardson

'J.

:4-

i 4.10 GOULD

<L Program Manager: Bob Thibaeau (Gould Fort Lauderdale)

-

: 4.11 JPL

e

Program Manager: Ed Colbert (Absolute Software Consultant)

-~

F Telephone Number: (213) 545-0567

= Project Phase: Various
b 4.12 SofTech

:: Summary: SofTech developed the Ada Language System (ALS), which
- is a compiler and APSE for the VAX family. The ALS was
e sponsored by the Army. SofTech also developed the Ada
! Compiler Validation Suite (ACVS), a set of about 4000
P, small Ada test programs.
N~

2 4.13 MAGNAVOX FORT WAYNE
[}

> Summary: Ada project was developed to assess 2167 Ada impacts.
v

*

¢
R
W] D-15

..................
LA AP T P A TR T I L A T L L I L T A Tl A S I T N T TR I i e e Y

\'J; asM

4.14 WIS PROJECTS

The government contact is Lt. Jeff Siegal.

4.15 PHASE 2 SECURE OPERATING SYSTEM - TRW

4.16 ARMY ALBUQUERQUE PROJECT

4.17 MILSTAR (IBM PORTION)

4.18 NASA Langley
Summary: Note Ed Dean has been out of town for over a month. He
is now back. Galorath made one contact and should make
another to get project information.
4.19 CCPDSR
Summary: About 200-300K lines replacement
Program Manager: ESD Steve Patey or Colonel Yonkers
Project Phase: The RFP will be released in September. We wvere

asked to make contact then.

4.20 LIST OF ADA PROJECTS IN THE ADA INFORMATION CLEARINGHOUSE NEWSLETTER

Ada-AIMES

Ada Compiler System (ACS)

Ada Designed/x.25/VLSI/VHSIC Chip

AdaEDIT

Ada Language System

Ada SAM Missile Simulation

Ada Test Tools

Advanced Field Artillery Tactical Data Systems (AFATADS)
Air Force Support to MEECN

Automated Test Procedure Generator for Ada
Concurrency Control Method for Database Indices (MU)
Design Evaluation Tool (DET)

E-48 Message Processor System

Flexible Ada Simulation Tool (FAST)

Flir Mission Payload Subsystem (FMPS)
GRAMACT

Intermediate Forward Test Equipment (IFTE)
Maneuver Control System (MCS)

Mobile Information Management System (MIMS)
MSOCC Ada Study

NOSC Tools

A e AT N At et e) _ e T e A e e e e e e “,
:ﬁ':!.'\..‘!.f.h'.\':i.. :L‘:Q-‘L."L“Aln 2 PNy lt}:"{ - /.' e N e e e A AP DR A e T AT RE AT AN

WA e T

; I."' v‘a." -“’._

Mt el 2t Skl a2l S At WAty LU0 Vol o) UK, T W) W A et g VAT VW W W I

Regency NET

RELATE/3000, Project Alert

Relational Database System

Single Channel Objective Tactical Terminal (SCOTT)
817 Fuze Tester

4.21 ADA JOINT PROGRAM OFFICE

AJPO has responded to our request for information on projects with a
list that includes project names, descriptions, sizes, and points of con-
tact. AJPO requested that we restrict distribution of this list, so it is

not included in this report. ESD/ACCR has a copy of the list.

I T I S

e f
3 _R_1

ARSI ARS

[AR

MaTataa’ataa PRESF STl AP N AT A NN

W e v ’
uw“m.ré\..\..\,.\...L NG L4

-
> 8,

ALY,

a4

¥

Ve . -
} ———

RPN

VATAF)Y

